#include <processor.h>
Inheritance diagram for EMAN::TestImageFourierNoiseGaussian:
Public Member Functions | |
virtual void | process_inplace (EMData *image) |
To process an image in-place. | |
virtual string | get_name () const |
Get the processor's name. | |
virtual string | get_desc () const |
Get the descrition of this specific processor. | |
virtual TypeDict | get_param_types () const |
Get processor parameter information in a dictionary. | |
Static Public Member Functions | |
Processor * | NEW () |
Static Public Attributes | |
const string | NAME = "testimage.noise.fourier.gaussian" |
sigma | sigma value for this Gaussian blob |
Definition at line 5650 of file processor.h.
|
Get the descrition of this specific processor. This function must be overwritten by a subclass.
Implements EMAN::Processor. Definition at line 5660 of file processor.h. 05661 { 05662 return "Replace a source image with pink Fourier noise, based on a Gaussian. Random phase."; 05663 }
|
|
Get the processor's name. Each processor is identified by a unique name.
Implements EMAN::Processor. Definition at line 5655 of file processor.h. 05656 {
05657 return NAME;
05658 }
|
|
Get processor parameter information in a dictionary. Each parameter has one record in the dictionary. Each record contains its name, data-type, and description.
Reimplemented from EMAN::Processor. Definition at line 5670 of file processor.h. References EMAN::TypeDict::put(). 05671 { 05672 TypeDict d; 05673 d.put("sigma", EMObject::FLOAT, "sigma value"); 05674 return d; 05675 }
|
|
Definition at line 5665 of file processor.h. 05666 { 05667 return new TestImageFourierNoiseGaussian(); 05668 }
|
|
To process an image in-place. For those processors which can only be processed out-of-place, override this function to just print out some error message to remind user call the out-of-place version.
Implements EMAN::Processor. Definition at line 6619 of file processor.cpp. References EMAN::EMData::ap2ri(), EMAN::EMData::depad(), EMAN::EMData::do_ift_inplace(), EMAN::EMData::get_data(), EMAN::Util::get_frand(), EMAN::EMData::get_ndim(), EMAN::EMData::get_xsize(), EMAN::EMData::get_ysize(), EMAN::EMData::get_zsize(), EMAN::EMData::is_complex(), EMAN::length(), nx, ny, phase(), EMAN::EMData::process_inplace(), EMAN::EMData::ri2ap(), EMAN::EMData::set_complex(), EMAN::Dict::set_default(), EMAN::EMData::set_fftodd(), EMAN::EMData::set_fftpad(), EMAN::EMData::set_size(), sqrt(), x, and y. 06620 { 06621 if (!image->is_complex()) { 06622 int nx = image->get_xsize(); 06623 int offset = 2 - nx%2; 06624 06625 image->set_size(nx+offset,image->get_ysize(),image->get_zsize()); 06626 image->set_complex(true); 06627 if (1 == offset) image->set_fftodd(true); 06628 else image->set_fftodd(false); 06629 image->set_fftpad(true); 06630 } 06631 image->ri2ap(); 06632 06633 float sigma = params.set_default("sigma",.25f); 06634 06635 float * d = image->get_data(); 06636 int nx = image->get_xsize(); 06637 int ny = image->get_ysize(); 06638 int nxy = image->get_ysize()*nx; 06639 int nzon2 = image->get_zsize()/2; 06640 int nyon2 = image->get_ysize()/2; 06641 float rx, ry, rz, length, amp, phase; 06642 int twox; 06643 for (int z = 0; z< image->get_zsize(); ++z) { 06644 for (int y = 0; y < image->get_ysize(); ++y) { 06645 for (int x = 0; x < image->get_xsize()/2; ++x) { 06646 rx = (float)x; 06647 ry = (float)nyon2 - (float)y; 06648 rz = (float)nzon2 - (float)z; 06649 length = sqrt(rx*rx + ry*ry + rz*rz); 06650 amp = exp(-sigma*length); 06651 phase = Util::get_frand(0,1)*2*M_PI; 06652 06653 twox = 2*x; 06654 size_t idx1 = twox + y*nx+z*nxy; 06655 size_t idx2 = idx1 + 1; 06656 d[idx1] = amp; 06657 d[idx2] = phase; 06658 06659 } 06660 } 06661 } 06662 06663 image->ap2ri(); 06664 if (image->get_ndim() == 2) { 06665 bool yodd = image->get_ysize() % 2 == 1; 06666 06667 int yit = image->get_ysize()/2-1; 06668 int offset = 1; 06669 if (yodd) { 06670 offset = 0; 06671 } 06672 for (int y = 0; y < yit; ++y) { 06673 int bot_idx = (y+offset)*nx; 06674 int top_idx = (ny-1-y)*nx; 06675 float r1 = d[bot_idx]; 06676 float i1 = d[bot_idx+1]; 06677 float r2 = d[top_idx]; 06678 float i2 = d[top_idx+1]; 06679 float r = (r1 + r2)/2.0f; 06680 float i = (i1 + i2)/2.0f; 06681 d[bot_idx] = r; 06682 d[top_idx] = r; 06683 d[bot_idx+1] = i; 06684 d[top_idx+1] = -i; 06685 06686 bot_idx = (y+offset)*nx+nx-2; 06687 top_idx = (ny-1-y)*nx+nx-2; 06688 r1 = d[bot_idx]; 06689 i1 = d[bot_idx+1]; 06690 r2 = d[top_idx]; 06691 i2 = d[top_idx+1]; 06692 r = (r1 + r2)/2.0f; 06693 i = (i1 + i2)/2.0f; 06694 d[bot_idx] = r; 06695 d[top_idx] = r; 06696 d[bot_idx+1] = i; 06697 d[top_idx+1] = -i; 06698 } 06699 06700 d[1] = 0; // 0 phase for this componenet 06701 d[nx-1] = 0; // 0 phase for this component 06702 d[ny/2*nx+nx-1] = 0;// 0 phase for this component 06703 d[ny/2*nx+1] = 0;// 0 phase for this component 06704 } 06705 06706 if (image->get_ndim() != 1) image->process_inplace("xform.fourierorigin.tocorner"); 06707 image->do_ift_inplace(); 06708 image->depad(); 06709 }
|
|
Definition at line 186 of file processor.cpp. |