#include <ctf.h>
Inheritance diagram for EMAN::EMAN2Ctf:
Public Member Functions | |
vector< float > | get_snr () |
void | set_snr (const vector< float > &vf) |
vector< float > | get_background () |
void | set_background (const vector< float > &vf) |
EMAN2Ctf () | |
EMAN2Ctf (const vector< float > &vf) | |
~EMAN2Ctf () | |
vector< float > | compute_1d (int size, float ds, CtfType type, XYData *struct_factor=0) |
void | compute_2d_real (EMData *image, CtfType type, XYData *struct_factor=0) |
void | compute_2d_complex (EMData *image, CtfType type, XYData *struct_factor=0) |
int | from_string (const string &ctf) |
string | to_string () const |
void | from_dict (const Dict &dict) |
Dict | to_dict () const |
void | from_vector (const vector< float > &vctf) |
vector< float > | to_vector () const |
void | copy_from (const Ctf *new_ctf) |
bool | equal (const Ctf *ctf1) const |
Public Attributes | |
float | dfdiff |
float | dfang |
float | ampcont |
float | dsbg |
vector< float > | background |
vector< float > | snr |
Private Member Functions | |
float | calc_amp1 () |
float | calc_lambda () |
float | calc_g1 () |
float | calc_g2 () |
float | calc_gamma (float g1, float g2, float s) |
float | calc_ctf1 (float g, float gamma, float s) |
float | calc_amplitude (float gamma) |
float | calc_noise (float s) |
Definition at line 222 of file ctf.h.
|
Definition at line 470 of file ctf.cpp. References ampcont, background, dfang, dfdiff, dsbg, and snr. 00471 { 00472 defocus = 0; 00473 dfdiff = 0; 00474 dfang = 0; 00475 bfactor = 0; 00476 ampcont = 0; 00477 voltage = 0; 00478 cs = 0; 00479 apix = 1.0; 00480 dsbg=-1; 00481 background.clear(); 00482 snr.clear(); 00483 }
|
|
Definition at line 244 of file ctf.h. 00244 {from_vector(vf);} //for unpickling
|
|
Definition at line 486 of file ctf.cpp. 00487 { 00488 }
|
|
Definition at line 264 of file ctf.h. References sqrt(). Referenced by compute_1d(), and compute_2d_complex(). 00265 { 00266 return (sqrt(1 - ampcont * ampcont/10000.0f)); 00267 }
|
|
Definition at line 302 of file ctf.h. Referenced by compute_2d_complex(). 00303 { 00304 float t1 = sqrt(1.0f - ampcont * ampcont/10000.0f) * sin(gamma); 00305 float v = (t1 + ampcont/100.0f * cos(gamma)); 00306 return v; 00307 }
|
|
Definition at line 296 of file ctf.h. Referenced by compute_1d(), and compute_2d_complex(). 00297 { 00298 float r = exp(-(bfactor/4.0f * s * s)) * (g * sin(gamma) + ampcont/100.0f * cos(gamma)); 00299 return r; 00300 }
|
|
Definition at line 275 of file ctf.h. Referenced by compute_1d(), and compute_2d_complex(). 00276 { 00277 float lambda = calc_lambda(); 00278 float g1 = 2.5e6f * cs * lambda * lambda * lambda; 00279 return g1; 00280 }
|
|
Definition at line 282 of file ctf.h. Referenced by compute_1d(), and compute_2d_complex(). 00283 { 00284 float lambda = calc_lambda(); 00285 float g2 = 5000.0f * -defocus * lambda; 00286 return g2; 00287 }
|
|
Definition at line 289 of file ctf.h. Referenced by compute_1d(), and compute_2d_complex(). 00290 { 00291 float s2 = s * s; 00292 float gamma = (float) (-2 * M_PI * (g1 * s2 * s2 + g2 * s2)); 00293 return gamma; 00294 }
|
|
Definition at line 269 of file ctf.h. References sqrt(). 00270 { 00271 float lambda = 12.2639f / sqrt(voltage * 1000.0f + 0.97845f * voltage * voltage); 00272 return lambda; 00273 }
|
|
Definition at line 309 of file ctf.h. Referenced by compute_1d(), and compute_2d_complex(). 00310 { 00311 int si=(int)(s/dsbg); 00312 if (si>(int)background.size()||si<0) return background.back(); 00313 return background[si]; 00314 }
|
|
Implements EMAN::Ctf. Definition at line 643 of file ctf.cpp. References Assert, background, calc_amp1(), calc_ctf1(), calc_g1(), calc_g2(), calc_gamma(), calc_noise(), div(), EMAN::XYData::get_yatx(), max_int(), min_int(), snr, x, and y. 00644 { 00645 Assert(size > 0); 00646 00647 // float tmp_f1 = sqrt((float) 2) * size / 2; 00648 // int np = (int) ceil(tmp_f1) + 2; 00649 int np=size/2; 00650 vector < float >r; 00651 00652 r.resize(np); 00653 00654 // float ds = 1 / (apix * size); 00655 float s = 0; 00656 float g1 = calc_g1(); 00657 float g2 = calc_g2(); 00658 float amp1 = calc_amp1(); 00659 00660 switch (type) { 00661 case CTF_AMP: 00662 for (int i = 0; i < np; i++) { 00663 float gamma = calc_gamma(g1, g2, s); 00664 r[i] = calc_ctf1(amp1, gamma, s); 00665 s += ds; 00666 } 00667 break; 00668 00669 case CTF_SIGN: 00670 for (int i = 0; i < np; i++) { 00671 float gamma = calc_gamma(g1, g2, s); 00672 r[i] = calc_ctf1(amp1, gamma, s)>=0?1.0f:-1.0f; 00673 s += ds; 00674 } 00675 break; 00676 00677 case CTF_BACKGROUND: 00678 for (int i = 0; i < np; i++) { 00679 float f = s/dsbg; 00680 int j = (int)floor(f); 00681 f-=j; 00682 if (j>(int)background.size()-2) r[i]=background.back(); 00683 else r[i]=background[j]*(1.0f-f)+background[j+1]*f; 00684 s+=ds; 00685 } 00686 break; 00687 00688 case CTF_SNR: 00689 for (int i = 0; i < np; i++) { 00690 float f = s/dsbg; 00691 int j = (int)floor(f); 00692 f-=j; 00693 if (j>(int)snr.size()-2) r[i]=snr.back(); 00694 else r[i]=snr[j]*(1.0f-f)+snr[j+1]*f; 00695 // printf("%d\t%f\n",j,snr[j]); 00696 s+=ds; 00697 } 00698 break; 00699 case CTF_SNR_SMOOTH: 00700 // This apparently complicated routine tries to make a nice smooth and accurate SNR curve. It does this 00701 // by fitting local regions of the SNR vs the theoretical SNR (theoretical CTF^2/measured background), 00702 // then taking the slope of the result times the theoretical SNR to produce a local SNR estimate 00703 00704 { // <- is to permit new temporary value allocation 00705 vector < float >tsnr; // theoretical SNR 00706 tsnr.resize(np); 00707 vector < float >dsnr; // data SNR 00708 dsnr.resize(np); 00709 00710 float s0=s; 00711 00712 for (int i = 0; i < np; i++) { 00713 float gamma = calc_gamma(g1, g2, s); 00714 tsnr[i] = calc_ctf1(amp1, gamma, s); // ctf amp 00715 00716 // background value 00717 float f = s/dsbg; 00718 int j = (int)floor(f); 00719 f-=j; 00720 float bg; 00721 if (j>(int)background.size()-2) bg=background.back(); 00722 else bg=background[j]*(1.0f-f)+background[j+1]*f; 00723 if (bg <=0) bg=.001; 00724 00725 tsnr[i] = tsnr[i]*tsnr[i]/bg; // This is now a SNR curve 00726 if (sf && s) { 00727 tsnr[i] *= sf->get_yatx(s); 00728 } 00729 00730 00731 // This is the SNR computed from the data without fitting 00732 if (j>(int)snr.size()-2) dsnr[i]=snr.back(); 00733 else dsnr[i]=snr[j]*(1.0f-f)+snr[j+1]*f; 00734 00735 s+=ds; 00736 } 00737 00738 int npsm=np/25; // 1/2 number of points to smooth over, 25 is arbitrary 00739 if (npsm<2) npsm=2; 00740 00741 s=s0; 00742 for (int i = 1; i < np; i++) { 00743 // simple linear regression embedded here 00744 double sum = 0; 00745 double sum_x = 0; 00746 double sum_y = 0; 00747 double sum_xx = 0; 00748 double sum_xy = 0; 00749 00750 for (int k=max_int(i-npsm,1); k<=min_int(i+npsm,np); k++) { 00751 double y = dsnr[k]; 00752 double x = tsnr[k]; 00753 00754 sum_x += x; 00755 sum_y += y; 00756 sum_xx += x * x; 00757 sum_xy += x * y; 00758 sum++; 00759 } 00760 00761 double div = sum * sum_xx - sum_x * sum_x; 00762 if (div == 0) { 00763 div = 0.0000001f; 00764 } 00765 00766 // *intercept = (float) ((sum_xx * sum_y - sum_x * sum_xy) / div); 00767 // *slope = (float) ((sum * sum_xy - sum_x * sum_y) / div); 00768 00769 r[i]=(float) ((sum * sum_xy - sum_x * sum_y) / div)*tsnr[i]; 00770 if (r[i]<0) r[i]=0; 00771 00772 s+=ds; 00773 } 00774 r[0]=0; 00775 } 00776 break; 00777 00778 case CTF_WIENER_FILTER: 00779 // if (!sf) { 00780 // LOGERR("CTF computation error, no SF found\n"); 00781 // return r; 00782 // } 00783 00784 for (int i = 0; i < np; i++) { 00785 float f = s/dsbg; 00786 int j = (int)floor(f); 00787 float bg; 00788 f-=j; 00789 if (j>(int)snr.size()-2) { 00790 /* r[i]=snr.back(); 00791 bg=background.back();*/ 00792 r[i]=0; 00793 } 00794 else { 00795 r[i]=snr[j]*(1.0f-f)+snr[j+1]*f; 00796 bg=background[j]*(1.0f-f)+background[j+1]*f; 00797 } 00798 if (r[i]<0) r[i]=0; 00799 r[i]=r[i]/(r[i]+1.0f); // Full Wiener filter assuming perfect image with noise 00800 // r[i]=sqrt(r[i]/bg)/(r[i]+1.0); // Wiener filter with 1/CTF term (sort of) to restore image then filter 00801 s+=ds; 00802 } 00803 r[0]=0; 00804 break; 00805 00806 case CTF_TOTAL: 00807 00808 for (int i = 0; i < np; i++) { 00809 float gamma = calc_gamma(g1, g2, s); 00810 if (sf) { 00811 r[i] = calc_ctf1(amp1, gamma, s); 00812 r[i] = r[i] * r[i] * sf->get_yatx(s) + calc_noise(s); 00813 } 00814 else { 00815 r[i] = calc_ctf1(amp1, gamma, s); 00816 r[i] = r[i] * r[i] + calc_noise(s); 00817 } 00818 s += ds; 00819 } 00820 break; 00821 default: 00822 break; 00823 } 00824 00825 return r; 00826 }
|
|
Implements EMAN::Ctf. Definition at line 837 of file ctf.cpp. References background, calc_amp1(), calc_amplitude(), calc_ctf1(), calc_g1(), calc_g2(), calc_gamma(), calc_noise(), dsbg, EMAN::EMData::get_data(), EMAN::EMData::get_xsize(), EMAN::XYData::get_yatx(), EMAN::EMData::get_ysize(), EMAN::Util::hypot_fast(), EMAN::EMData::is_complex(), LOGERR, nx, ny, snr, EMAN::EMData::to_one(), EMAN::EMData::update(), v, x, and y. 00838 { 00839 if (!image) { 00840 LOGERR("image is null. cannot computer 2D complex CTF"); 00841 return; 00842 } 00843 00844 if (image->is_complex() == false) { 00845 LOGERR("compute_2d_complex can only work on complex images"); 00846 return; 00847 } 00848 00849 int nx = image->get_xsize(); 00850 int ny = image->get_ysize(); 00851 00852 if ((ny%2==1 && nx!=ny+1) || (ny%2==0 && nx != ny + 2)) { 00853 printf("nx=%d ny=%d\n",nx,ny); 00854 LOGERR("compute_2d_complex only works on (nx, nx-2) images"); 00855 return; 00856 } 00857 00858 float ds = 1.0f / (apix * ny); 00859 image->to_one(); 00860 00861 float *d = image->get_data(); 00862 float g1 = calc_g1(); 00863 float g2 = calc_g2(); 00864 float amp1 = calc_amp1(); 00865 00866 if (type == CTF_BACKGROUND) { 00867 for (int y = -ny/2; y < ny/2; y++) { 00868 int y2=(y+ny)%ny; 00869 int ynx = y2 * nx; 00870 00871 for (int x = 0; x < nx / 2; x++) { 00872 float s = (float) Util::hypot_fast(x, y ) * ds; 00873 d[x * 2 + ynx] = calc_noise(s); 00874 d[x * 2 + ynx + 1] = 0; // The phase is somewhat arbitrary 00875 } 00876 } 00877 } 00878 else if (type == CTF_AMP) { 00879 for (int y = -ny/2; y < ny/2; y++) { 00880 int y2=(y+ny)%ny; 00881 int ynx = y2 * nx; 00882 00883 for (int x = 0; x < nx / 2; x++) { 00884 float s = (float)Util::hypot_fast(x,y ) * ds; 00885 float gamma = calc_gamma(g1, g2, s); 00886 float v = calc_ctf1(amp1, gamma, s); 00887 // float v = calc_amplitude(gamma); 00888 d[x * 2 + ynx] = v; 00889 d[x * 2 + ynx + 1] = 0; 00890 } 00891 } 00892 } 00893 else if (type == CTF_SIGN) { 00894 for (int y = -ny/2; y < ny/2; y++) { 00895 int y2=(y+ny)%ny; 00896 int ynx = y2 * nx; 00897 for (int x = 0; x < nx / 2; x++) { 00898 float s = (float)Util::hypot_fast(x,y ) * ds; 00899 float gamma = calc_gamma(g1, g2, s); 00900 float v = calc_amplitude(gamma); 00901 d[x * 2 + ynx] = v >= 0 ? 1.0f : -1.0f; 00902 d[x * 2 + ynx + 1] = 0; 00903 } 00904 } 00905 } 00906 else if (type == CTF_SNR) { 00907 00908 for (int y = -ny/2; y < ny/2; y++) { 00909 int y2=(y+ny)%ny; 00910 int ynx = y2 * nx; 00911 00912 for (int x = 0; x < nx / 2; x++) { 00913 00914 float s = (float)Util::hypot_fast(x,y ) * ds; 00915 float f = s/dsbg; 00916 int j = (int)floor(f); 00917 f-=j; 00918 if (j>(int)snr.size()-2) d[x*2+ynx]=snr.back(); 00919 else d[x*2+ynx]=snr[j]*(1.0f-f)+snr[j+1]*f; 00920 d[x * 2 + ynx + 1] = 0; 00921 } 00922 } 00923 d[0]=0; 00924 } 00925 else if (type == CTF_SNR_SMOOTH) { 00926 for (int y = -ny/2; y < ny/2; y++) { 00927 int y2=(y+ny)%ny; 00928 int ynx = y2 * nx; 00929 00930 for (int x = 0; x < nx / 2; x++) { 00931 00932 float s = (float)Util::hypot_fast(x,y ) * ds; 00933 float f = s/dsbg; 00934 int j = (int)floor(f); 00935 f-=j; 00936 if (j>(int)snr.size()-2) d[x*2+ynx]=snr.back(); 00937 else d[x*2+ynx]=snr[j]*(1.0f-f)+snr[j+1]*f; 00938 d[x * 2 + ynx + 1] = 0; 00939 } 00940 } 00941 d[0]=0; 00942 } 00943 else if (type == CTF_WIENER_FILTER) { 00944 if (dsbg==0) printf("Warning, DSBG set to 0\n"); 00945 for (int y = -ny/2; y < ny/2; y++) { 00946 int y2=(y+ny)%ny; 00947 int ynx = y2 * nx; 00948 00949 for (int x = 0; x < nx / 2; x++) { 00950 00951 float s = (float)Util::hypot_fast(x,y ) * ds; 00952 float f = s/dsbg; 00953 int j = (int)floor(f); 00954 float bg,snrf; 00955 f-=j; 00956 if (j>(int)snr.size()-2) { 00957 /* bg=background.back(); 00958 d[x*2+ynx]=snr.back()/(snr.back()+1.0);*/ 00959 d[x*2+ynx]=0; 00960 } 00961 else { 00962 bg=background[j]*(1.0f-f)+background[j+1]*f; 00963 snrf=snr[j]*(1.0f-f)+snr[j+1]*f; 00964 00965 // printf("%d\t%f\n",x,sqrt(snrf/bg)/(snrf+1.0)); 00966 if (snrf<0) snrf=0.0; 00967 // d[x*2+ynx]=sqrt(snrf/bg)/(snrf+1.0); // Note that this is a Wiener filter with a 1/CTF term to compensate for the filtration already applied, but needs to be multiplied by the structure factor 00968 d[x*2+ynx]=snrf/(snrf+1); // This is just the simple Wiener filter 00969 00970 } 00971 d[x * 2 + ynx + 1] = 0; 00972 } 00973 } 00974 d[0]=0; 00975 } 00976 else if (type == CTF_TOTAL) { 00977 float amp1 = calc_amp1(); 00978 00979 for (int y = -ny/2; y < ny/2; y++) { 00980 int y2=(y+ny)%ny; 00981 int ynx = y2 * nx; 00982 00983 for (int x = 0; x < nx / 2; x++) { 00984 00985 float s = (float)Util::hypot_fast(x,y ) * ds; 00986 float gamma = calc_gamma(g1, g2, s); 00987 float f = calc_ctf1(amp1, gamma, s); 00988 float noise = 0; 00989 f = f * f; 00990 00991 if (sf && s) { 00992 f *= sf->get_yatx(s); 00993 } 00994 f+=noise; 00995 00996 d[x * 2 + ynx] *= f; 00997 d[x * 2 + ynx + 1] = 0; 00998 } 00999 } 01000 } 01001 else printf("Unknown CTF image mode\n"); 01002 01003 image->update(); 01004 }
|
|
Implements EMAN::Ctf. Definition at line 829 of file ctf.cpp. 00830 { 00831 00832 00833 }
|
|
Implements EMAN::Ctf. Definition at line 622 of file ctf.cpp. References ampcont, EMAN::Ctf::apix, background, EMAN::Ctf::bfactor, EMAN::Ctf::cs, EMAN::Ctf::defocus, dfang, dfdiff, dsbg, snr, and EMAN::Ctf::voltage. 00623 { 00624 if (new_ctf) { 00625 const EMAN2Ctf *c = static_cast<const EMAN2Ctf *>(new_ctf); 00626 defocus = c->defocus; 00627 dfdiff = c->dfdiff; 00628 dfang = c->dfang; 00629 bfactor = c->bfactor; 00630 ampcont = c->ampcont; 00631 voltage = c->voltage; 00632 cs = c->cs; 00633 apix = c->apix; 00634 dsbg = c->dsbg; 00635 background = c->background; 00636 snr = c->snr; 00637 } 00638 }
|
|
Implements EMAN::Ctf. Definition at line 1008 of file ctf.cpp. References ampcont, EMAN::Ctf::apix, background, EMAN::Ctf::bfactor, EMAN::Ctf::cs, EMAN::Ctf::defocus, dfang, dfdiff, dsbg, snr, and EMAN::Ctf::voltage. 01009 { 01010 if (ctf1) { 01011 const EMAN2Ctf *c = static_cast<const EMAN2Ctf *>(ctf1); 01012 if (defocus != c->defocus || 01013 dfdiff != c->dfdiff || 01014 dfang != c->dfang || 01015 bfactor != c->bfactor || 01016 ampcont != c->ampcont || 01017 voltage != c->voltage || 01018 cs != c->cs || 01019 apix != c->apix || 01020 dsbg != c->dsbg || 01021 background.size() != c->background.size() || 01022 snr.size() != c->snr.size() 01023 ) return false; 01024 01025 for (unsigned int i=0; i<background.size(); i++) { 01026 if (background[i]!=c->background[i]) return false; 01027 } 01028 for (unsigned int i=0; i<snr.size(); i++) { 01029 if (snr[i]!=c->snr[i]) return false; 01030 } 01031 return true; 01032 } 01033 return false; 01034 }
|
|
Implements EMAN::Ctf. Definition at line 548 of file ctf.cpp. References ampcont, background, dfang, dfdiff, dsbg, and snr. 00549 { 00550 defocus = (float)dict["defocus"]; 00551 dfdiff = (float)dict["dfdiff"]; 00552 dfang = (float)dict["dfang"]; 00553 bfactor = (float)dict["bfactor"]; 00554 ampcont = (float)dict["ampcont"]; 00555 voltage = (float)dict["voltage"]; 00556 cs = (float)dict["cs"]; 00557 apix = (float)dict["apix"]; 00558 dsbg = (float)dict["dsbg"]; 00559 background = dict["background"]; 00560 snr = dict["snr"]; 00561 }
|
|
Implements EMAN::Ctf. Definition at line 491 of file ctf.cpp. References ampcont, Assert, background, dfang, dfdiff, dsbg, InvalidValueException, snr, and v. 00492 { 00493 Assert(ctf != ""); 00494 char type=' '; 00495 int pos,i,j; 00496 int bglen=0,snrlen=0; 00497 float v; 00498 const char *s=ctf.c_str(); 00499 00500 sscanf(s, "%c%f %f %f %f %f %f %f %f %f %d%n", 00501 &type,&defocus, &dfdiff,&dfang,&bfactor,&cont,&voltage, &cs, &apix,&dsbg,&bglen,&pos); 00502 if (type!='E') throw InvalidValueException(type,"Trying to initialize Ctf object with bad string"); 00503 00504 00505 background.resize(bglen); 00506 for (i=0; i<bglen; i++) { 00507 if (sscanf(s+pos,",%f%n",&v,&j)<1) return(1); 00508 background[i]=v; 00509 pos+=j; 00510 } 00511 00512 sscanf(s+pos," %d%n",&snrlen,&j); 00513 pos+=j; 00514 snr.resize(snrlen); 00515 for (i=0; i<snrlen; i++) { 00516 if (sscanf(s+pos,",%f%n",&v,&j)<1) return(1); 00517 snr[i]=v; 00518 pos+=j; 00519 } 00520 00521 return 0; 00522 00523 }
|
|
Implements EMAN::Ctf. Definition at line 581 of file ctf.cpp. References ampcont, background, dfang, dfdiff, dsbg, and snr. 00582 { 00583 int i; 00584 defocus = vctf[0]; 00585 dfdiff = vctf[1]; 00586 dfang = vctf[2]; 00587 bfactor = vctf[3]; 00588 ampcont = vctf[4]; 00589 voltage = vctf[5]; 00590 cs = vctf[6]; 00591 apix = vctf[7]; 00592 dsbg = vctf[8]; 00593 background.resize((int)vctf[9]); 00594 for (i=0; i<(int)vctf[9]; i++) background[i]=vctf[i+10]; 00595 snr.resize((int)vctf[i+10]); 00596 for (int j=0; j<(int)vctf[i+10]; j++) snr[j]=vctf[i+j+11]; 00597 }
|
|
Definition at line 239 of file ctf.h. 00239 { return background;}
|
|
Definition at line 237 of file ctf.h. 00237 { return snr;}
|
|
Definition at line 240 of file ctf.h. 00240 {background = vf;}
|
|
Definition at line 238 of file ctf.h. 00238 {snr = vf;}
|
|
Implements EMAN::Ctf. Definition at line 563 of file ctf.cpp. 00564 { 00565 Dict dict; 00566 dict["defocus"] = defocus; 00567 dict["dfdiff"] = dfdiff; 00568 dict["dfang"] = dfang; 00569 dict["bfactor"] = bfactor; 00570 dict["ampcont"] = ampcont; 00571 dict["voltage"] = voltage; 00572 dict["cs"] = cs; 00573 dict["apix"] = apix; 00574 dict["dsbg"] = dsbg; 00575 dict["background"] = background; 00576 dict["snr"] = snr; 00577 00578 return dict; 00579 }
|
|
Implements EMAN::Ctf. Definition at line 525 of file ctf.cpp. References ampcont, background, dfang, dfdiff, dsbg, and snr. 00526 { 00527 char ctf[256]; 00528 sprintf(ctf, "E%1.4g %1.4g %1.4g %1.4g %1.4g %1.4g %1.4g %1.4g %1.4g %d", 00529 defocus, dfdiff, dfang, bfactor, ampcont, voltage, cs, apix, dsbg,(int)background.size()); 00530 00531 string ret=ctf; 00532 for (int i=0; i<(int)background.size(); i++) { 00533 sprintf(ctf,",%1.3g",background[i]); 00534 ret+=ctf; 00535 } 00536 00537 sprintf(ctf, " %d",(int)snr.size()); 00538 ret+=ctf; 00539 for (int i=0; i<(int)snr.size(); i++) { 00540 sprintf(ctf,",%1.3g",snr[i]); 00541 ret+=ctf; 00542 } 00543 00544 00545 return ret; 00546 }
|
|
Implements EMAN::Ctf. Definition at line 599 of file ctf.cpp. References ampcont, background, dfang, dfdiff, dsbg, and snr. 00600 { 00601 vector<float> vctf; 00602 00603 vctf.push_back(defocus); 00604 vctf.push_back(dfdiff); 00605 vctf.push_back(dfang); 00606 vctf.push_back(bfactor); 00607 vctf.push_back(ampcont); 00608 vctf.push_back(voltage); 00609 vctf.push_back(cs); 00610 vctf.push_back(apix); 00611 vctf.push_back(dsbg); 00612 vctf.push_back((float)background.size()); 00613 for (unsigned int i=0; i<background.size(); i++) vctf.push_back(background[i]); 00614 vctf.push_back((float)snr.size()); 00615 for (unsigned int j=0; j<snr.size(); j++) vctf.push_back(snr[j]); 00616 00617 return vctf; 00618 }
|
|
Definition at line 229 of file ctf.h. Referenced by copy_from(), EMAN2Ctf(), equal(), from_dict(), from_string(), from_vector(), to_string(), and to_vector(). |
|
Definition at line 234 of file ctf.h. Referenced by compute_1d(), compute_2d_complex(), copy_from(), EMAN2Ctf(), equal(), from_dict(), from_string(), from_vector(), to_string(), and to_vector(). |
|
Definition at line 227 of file ctf.h. Referenced by copy_from(), EMAN2Ctf(), equal(), from_dict(), from_string(), from_vector(), to_string(), and to_vector(). |
|
Definition at line 226 of file ctf.h. Referenced by copy_from(), EMAN2Ctf(), equal(), from_dict(), from_string(), from_vector(), to_string(), and to_vector(). |
|
Definition at line 233 of file ctf.h. Referenced by compute_2d_complex(), copy_from(), EMAN2Ctf(), equal(), from_dict(), from_string(), from_vector(), to_string(), and to_vector(). |
|
Definition at line 235 of file ctf.h. Referenced by compute_1d(), compute_2d_complex(), copy_from(), EMAN2Ctf(), equal(), from_dict(), from_string(), from_vector(), to_string(), and to_vector(). |