#include <processor.h>
Inheritance diagram for EMAN::FourierToCornerProcessor:
Public Member Functions | |
virtual void | process_inplace (EMData *image) |
Fourier origin shift the image in the backwards direction Should only be called after the application of FourierToCenterProcessor. | |
virtual string | get_name () const |
Get the processor's name. | |
virtual string | get_desc () const |
Get the descrition of this specific processor. | |
Static Public Member Functions | |
static Processor * | NEW () |
Static Public Attributes | |
static const string | NAME = "xform.fourierorigin.tocorner" |
Definition at line 4677 of file processor.h.
virtual string EMAN::FourierToCornerProcessor::get_desc | ( | ) | const [inline, virtual] |
Get the descrition of this specific processor.
This function must be overwritten by a subclass.
Implements EMAN::Processor.
Definition at line 4697 of file processor.h.
virtual string EMAN::FourierToCornerProcessor::get_name | ( | ) | const [inline, virtual] |
Get the processor's name.
Each processor is identified by a unique name.
Implements EMAN::Processor.
Definition at line 4687 of file processor.h.
References NAME.
04688 { 04689 return NAME; 04690 }
static Processor* EMAN::FourierToCornerProcessor::NEW | ( | ) | [inline, static] |
Definition at line 4692 of file processor.h.
04693 { 04694 return new FourierToCornerProcessor(); 04695 }
void FourierToCornerProcessor::process_inplace | ( | EMData * | image | ) | [virtual] |
Fourier origin shift the image in the backwards direction Should only be called after the application of FourierToCenterProcessor.
image | the image to operate on |
ImageFormatException | if the image is not complex |
Implements EMAN::Processor.
Definition at line 4430 of file processor.cpp.
References EMAN::EMData::get_data(), EMAN::EMData::get_xsize(), EMAN::EMData::get_ysize(), EMAN::EMData::get_zsize(), ImageFormatException, EMAN::EMData::is_complex(), rdata, and EMAN::EMData::set_shuffled().
04431 { 04432 if ( !image->is_complex() ) throw ImageFormatException("Can not Fourier origin shift an image that is not complex"); 04433 04434 int nx=image->get_xsize(); 04435 int ny=image->get_ysize(); 04436 int nz=image->get_zsize(); 04437 04438 int nxy = nx*ny; 04439 04440 if ( ny == 1 && nz == 1 ){ 04441 cout << "Warning- attempted Fourier origin shift a 1D image - no action taken" << endl; 04442 return; 04443 } 04444 int yodd = (ny%2==1); 04445 int zodd = (nz%2==1); 04446 04447 float* rdata = image->get_data(); 04448 04449 float tmp[2]; 04450 float* p1; 04451 float* p2; 04452 04453 if (yodd){ 04454 // Swap the middle slice (with respect to the y direction) with the bottom slice 04455 // shifting all slices above the middles slice upwards by one pixel, stopping 04456 // at the middle slice, not if nz = 1 we are not talking about slices, we are 04457 // talking about rows 04458 float prev[2]; 04459 size_t idx; 04460 for( int s = 0; s < nz; s++ ) { 04461 for( int c =0; c < nx; c += 2 ) { 04462 idx = (size_t)s*nxy+ny/2*nx+c; 04463 prev[0] = rdata[idx]; 04464 prev[1] = rdata[idx+1]; 04465 for( int r = 0; r <= ny/2; ++r ) { 04466 idx = (size_t)s*nxy+r*nx+c; 04467 float* p1 = &rdata[idx]; 04468 tmp[0] = p1[0]; 04469 tmp[1] = p1[1]; 04470 04471 p1[0] = prev[0]; 04472 p1[1] = prev[1]; 04473 04474 prev[0] = tmp[0]; 04475 prev[1] = tmp[1]; 04476 } 04477 } 04478 } 04479 } 04480 04481 // Shift slices (3D) or rows (2D) correctly in the y direction 04482 size_t idx1, idx2; 04483 for( int s = 0; s < nz; ++s ) { 04484 for( int r = 0 + yodd; r < ny/2+yodd; ++r ) { 04485 for( int c =0; c < nx; c += 2 ) { 04486 idx1 = (size_t)s*nxy+r*nx+c; 04487 idx2 = (size_t)s*nxy+(r+ny/2)*nx+c; 04488 p1 = &rdata[idx1]; 04489 p2 = &rdata[idx2]; 04490 04491 tmp[0] = p1[0]; 04492 tmp[1] = p1[1]; 04493 04494 p1[0] = p2[0]; 04495 p1[1] = p2[1]; 04496 04497 p2[0] = tmp[0]; 04498 p2[1] = tmp[1]; 04499 } 04500 } 04501 } 04502 04503 if ( nz != 1 ) 04504 { 04505 04506 if (zodd){ 04507 // Swap the middle slice (with respect to the z direction) and the front slice 04508 // shifting all behind the front slice towards the middle a distance of 1 voxel, 04509 // stopping at the middle slice. 04510 float prev[2]; 04511 size_t idx; 04512 for( int r = 0; r < ny; ++r ) { 04513 for( int c =0; c < nx; c += 2 ) { 04514 idx = (size_t)nz/2*nxy+r*nx+c; 04515 prev[0] = rdata[idx]; 04516 prev[1] = rdata[idx+1]; 04517 for( int s = 0; s <= nz/2; ++s ) { 04518 idx = (size_t)s*nxy+r*nx+c; 04519 float* p1 = &rdata[idx]; 04520 tmp[0] = p1[0]; 04521 tmp[1] = p1[1]; 04522 04523 p1[0] = prev[0]; 04524 p1[1] = prev[1]; 04525 04526 prev[0] = tmp[0]; 04527 prev[1] = tmp[1]; 04528 } 04529 } 04530 } 04531 } 04532 04533 // Shift slices correctly in the z direction 04534 size_t idx1, idx2; 04535 for( int s = 0+zodd; s < nz/2 + zodd; ++s ) { 04536 for( int r = 0; r < ny; ++r ) { 04537 for( int c =0; c < nx; c += 2 ) { 04538 idx1 = (size_t)s*nxy+r*nx+c; 04539 idx2 = (size_t)(s+nz/2)*nxy+r*nx+c; 04540 p1 = &rdata[idx1]; 04541 p2 = &rdata[idx2]; 04542 04543 tmp[0] = p1[0]; 04544 tmp[1] = p1[1]; 04545 04546 p1[0] = p2[0]; 04547 p1[1] = p2[1]; 04548 04549 p2[0] = tmp[0]; 04550 p2[1] = tmp[1]; 04551 } 04552 } 04553 } 04554 } 04555 image->set_shuffled(false); 04556 }
const string FourierToCornerProcessor::NAME = "xform.fourierorigin.tocorner" [static] |