util_sparx.cpp File Reference

#include <cstring>
#include <ctime>
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <boost/format.hpp>
#include "emdata.h"
#include "util.h"
#include "fundamentals.h"
#include "lapackblas.h"
#include "lbfgsb.h"
#include "steepest.h"
#include "emassert.h"
#include "randnum.h"
#include <gsl/gsl_sf_bessel.h>
#include <cmath>

Include dependency graph for util_sparx.cpp:

Go to the source code of this file.

Classes

struct  ori_t
struct  cmpang
struct  tmpstruct
struct  stcom_
struct  peak_table
struct  ccf_point
struct  ccf_value
struct  point3d_t

Defines

#define fdata(i, j)   fdata[ i-1 + (j-1)*nxdata ]
#define fdata(i, j)   fdata[ i-1 + (j-1)*nxdata ]
#define circ(i)   circ[i-1]
#define numr(i, j)   numr[(j-1)*3 + i-1]
#define xim(i, j)   xim[(j-1)*nsam + i-1]
#define tab1(i)   tab1[i-1]
#define xcmplx(i, j)   xcmplx [(j-1)*2 + i-1]
#define br(i)   br[i-1]
#define bi(i)   bi[i-1]
#define b(i)   b[i-1]
#define circ1(i)   circ1[i-1]
#define circ2(i)   circ2[i-1]
#define t(i)   t[i-1]
#define q(i)   q[i-1]
#define b(i)   b[i-1]
#define t7(i)   t7[i-1]
#define dout(i, j)   dout[i+maxrin*j]
#define circ1b(i)   circ1b[i-1]
#define circ2b(i)   circ2b[i-1]
#define dout(i, j)   dout[i+maxrin*j]
#define circ1b(i)   circ1b[i-1]
#define circ2b(i)   circ2b[i-1]
#define QUADPI   3.141592653589793238462643383279502884197
#define PI2   2*QUADPI
#define QUADPI   3.141592653589793238462643383279502884197
#define PI2   QUADPI*2
#define deg_rad   QUADPI/180.0
#define rad_deg   180.0/QUADPI
#define old_ptr(i, j, k)   old_ptr[i+(j+(k*ny))*(size_t)nx]
#define new_ptr(iptr, jptr, kptr)   new_ptr[iptr+(jptr+(kptr*new_ny))*(size_t)new_nx]
#define inp(i, j, k)   inp[(i+new_st_x)+((j+new_st_y)+((k+new_st_z)*ny))*(size_t)nx]
#define outp(i, j, k)   outp[i+(j+(k*new_ny))*(size_t)new_nx]
#define inp(i, j, k)   inp[i+(j+(k*ny))*(size_t)nx]
#define outp(i, j, k)   outp[(i+new_st_x)+((j+new_st_y)+((k+new_st_z)*new_ny))*(size_t)new_nx]
#define QUADPI   3.141592653589793238462643383279502884197
#define DGR_TO_RAD   QUADPI/180
#define DM(I)   DM [I-1]
#define SS(I)   SS [I-1]
#define DM(I)   DM[I-1]
#define B(i, j)   Bptr[i-1+((j-1)*NSAM)]
#define CUBE(i, j, k)   CUBEptr[(i-1)+((j-1)+((k-1)*NY3D))*(size_t)NX3D]
#define W(i, j)   Wptr [i-1+((j-1)*Wnx)]
#define PROJ(i, j)   PROJptr [i-1+((j-1)*NNNN)]
#define SS(I, J)   SS [I-1 + (J-1)*6]
#define W(i, j)   Wptr [i-1+((j-1)*Wnx)]
#define PROJ(i, j)   PROJptr [i-1+((j-1)*NNNN)]
#define SS(I, J)   SS [I-1 + (J-1)*6]
#define RI(i, j)   RI [(i-1) + ((j-1)*3)]
#define CC(i)   CC [i-1]
#define CP(i)   CP [i-1]
#define VP(i)   VP [i-1]
#define VV(i)   VV [i-1]
#define AMAX1(i, j)   i>j?i:j
#define AMIN1(i, j)   i<j?i:j
#define mymax(x, y)   (((x)>(y))?(x):(y))
#define mymin(x, y)   (((x)<(y))?(x):(y))
#define sign(x, y)   (((((y)>0)?(1):(-1))*(y!=0))*(x))
#define quadpi   3.141592653589793238462643383279502884197
#define dgr_to_rad   quadpi/180
#define deg_to_rad   quadpi/180
#define rad_to_deg   180/quadpi
#define rad_to_dgr   180/quadpi
#define TRUE   1
#define FALSE   0
#define theta(i)   theta [i-1]
#define phi(i)   phi [i-1]
#define weight(i)   weight [i-1]
#define lband(i)   lband [i-1]
#define ts(i)   ts [i-1]
#define thetast(i)   thetast [i-1]
#define key(i)   key [i-1]
#define TRUE_   (1)
#define FALSE_   (0)
#define abs(x)   ((x) >= 0 ? (x) : -(x))
#define img_ptr(i, j, k)   img_ptr[2*(i-1)+((j-1)+((k-1)*ny))*(size_t)nxo]
#define img_ptr(i, j, k)   img_ptr[i+(j+(k*ny))*(size_t)nx]
#define img2_ptr(i, j, k)   img2_ptr[i+(j+(k*ny))*(size_t)nx]
#define cent(i)   out[i+N]
#define assign(i)   out[i]
#define data(i, j)   group[i*ny+j]

Functions

int circum_ (double *, double *, double *, double *, int *)
long int left_ (double *, double *, double *, double *, double *, double *, double *, double *, double *)
int addnod_ (int *, int *, double *, double *, double *, int *, int *, int *, int *, int *)
int i_dnnt (double *x)
double angle_ (double *v1, double *v2, double *v3)
double areas_ (double *v1, double *v2, double *v3)
double areav_new__ (int *k, int *n, double *x, double *y, double *z__, int *list, int *lptr, int *lend, int *ier)
int bdyadd_ (int *kk, int *i1, int *i2, int *list, int *lptr, int *lend, int *lnew)
int bnodes_ (int *n, int *list, int *lptr, int *lend, int *nodes, int *nb, int *na, int *nt)
int circle_ (int *k, double *xc, double *yc, int *ier)
int covsph_ (int *kk, int *n0, int *list, int *lptr, int *lend, int *lnew)
int crlist_ (int *n, int *ncol, double *x, double *y, double *z__, int *list, int *lend, int *lptr, int *lnew, int *ltri, int *listc, int *nb, double *xc, double *yc, double *zc, double *rc, int *ier)
int delarc_ (int *n, int *io1, int *io2, int *list, int *lptr, int *lend, int *lnew, int *ier)
int delnb_ (int *n0, int *nb, int *n, int *list, int *lptr, int *lend, int *lnew, int *lph)
int delnod_ (int *k, int *n, double *x, double *y, double *z__, int *list, int *lptr, int *lend, int *lnew, int *lwk, int *iwk, int *ier)
int drwarc_ (int *, double *p, double *q, double *tol, int *nseg)
int edge_ (int *in1, int *in2, double *x, double *y, double *z__, int *lwk, int *iwk, int *list, int *lptr, int *lend, int *ier)
int getnp_ (double *x, double *y, double *z__, int *list, int *lptr, int *lend, int *l, int *npts, double *df, int *ier)
int insert_ (int *k, int *lp, int *list, int *lptr, int *lnew)
long int inside_ (double *p, int *lv, double *xv, double *yv, double *zv, int *nv, int *listv, int *ier)
int intadd_ (int *kk, int *i1, int *i2, int *i3, int *list, int *lptr, int *lend, int *lnew)
int intrsc_ (double *p1, double *p2, double *cn, double *p, int *ier)
int jrand_ (int *n, int *ix, int *iy, int *iz)
int lstptr_ (int *lpl, int *nb, int *list, int *lptr)
int nbcnt_ (int *lpl, int *lptr)
int nearnd_ (double *p, int *ist, int *n, double *x, double *y, double *z__, int *list, int *lptr, int *lend, double *al)
int optim_ (double *x, double *y, double *z__, int *na, int *list, int *lptr, int *lend, int *nit, int *iwk, int *ier)
int projct_ (double *px, double *py, double *pz, double *ox, double *oy, double *oz, double *ex, double *ey, double *ez, double *vx, double *vy, double *vz, long int *init, double *x, double *y, double *z__, int *ier)
int scoord_ (double *px, double *py, double *pz, double *plat, double *plon, double *pnrm)
double store_ (double *x)
int swap_ (int *in1, int *in2, int *io1, int *io2, int *list, int *lptr, int *lend, int *lp21)
long int swptst_ (int *n1, int *n2, int *n3, int *n4, double *x, double *y, double *z__)
int trans_ (int *n, double *rlat, double *rlon, double *x, double *y, double *z__)
int trfind_ (int *nst, double *p, int *n, double *x, double *y, double *z__, int *list, int *lptr, int *lend, double *b1, double *b2, double *b3, int *i1, int *i2, int *i3)
int trlist_ (int *n, int *list, int *lptr, int *lend, int *nrow, int *nt, int *ltri, int *ier)
int trlprt_ (int *n, double *x, double *y, double *z__, int *iflag, int *nrow, int *nt, int *ltri, int *lout)
int trmesh_ (int *n, double *x, double *y, double *z__, int *list, int *lptr, int *lend, int *lnew, int *near__, int *next, double *dist, int *ier)
int trplot_ (int *lun, double *pltsiz, double *elat, double *elon, double *a, int *n, double *x, double *y, double *z__, int *list, int *lptr, int *lend, char *, long int *numbr, int *ier, short)
int trprnt_ (int *n, double *x, double *y, double *z__, int *iflag, int *list, int *lptr, int *lend, int *lout)
int vrplot_ (int *lun, double *pltsiz, double *elat, double *elon, double *a, int *n, double *x, double *y, double *z__, int *nt, int *listc, int *lptr, int *lend, double *xc, double *yc, double *zc, char *, long int *numbr, int *ier, short)
int random_ (int *ix, int *iy, int *iz, double *rannum)
int find_group (int ix, int iy, int iz, int grpid, EMData *mg, EMData *visited)
bool jiafunc (int i, int j)

Variables

stcom_ stcom_1
int branch_all = 0
int * costlist_global


Define Documentation

#define abs (  )     ((x) >= 0 ? (x) : -(x))

Definition at line 7925 of file util_sparx.cpp.

#define AMAX1 ( i,
 )     i>j?i:j

Definition at line 6070 of file util_sparx.cpp.

Referenced by EMAN::Util::WTM().

#define AMIN1 ( i,
 )     i<j?i:j

Definition at line 6071 of file util_sparx.cpp.

Referenced by EMAN::Util::WTM().

#define assign (  )     out[i]

Definition at line 20262 of file util_sparx.cpp.

Referenced by EMAN::Util::cluster_pairwise().

#define B ( i,
 )     Bptr[i-1+((j-1)*NSAM)]

Definition at line 5813 of file util_sparx.cpp.

Referenced by EMAN::Util::BPCQ(), EMAN::Util::branch_factor_0(), EMAN::Util::branch_factor_2(), EMAN::Util::branch_factor_3(), EMAN::Util::branch_factor_4(), EMAN::LowpassAutoBProcessor::create_radial_func(), EMAN::Util::histc(), EMAN::Util::im_diff(), and submatrix().

#define b (  )     b[i-1]

Definition at line 3167 of file util_sparx.cpp.

#define b (  )     b[i-1]

Definition at line 3167 of file util_sparx.cpp.

Referenced by EMAN::CtfCAutoAverager::add_image(), EMAN::CtfCWautoAverager::add_image(), bmv_(), EMAN::Util::cml_line_insino(), EMAN::Util::cml_line_insino_all(), EMAN::OptVarianceCmp::cmp(), Derivatives(), Derivatives_G(), formk_(), GCVmin_Tik(), EMAN::TetrahedralSym::get_asym_unit_points(), EMAN::PlatonicSym::get_asym_unit_points(), EMAN::HSym::get_asym_unit_points(), EMAN::EMUtil::get_euler_names(), EMAN::Util::initial_prune(), inside_(), EMAN::Matrix4::inverse(), main(), EMAN::Matrix4::operator *(), EMAN::operator *(), EMAN::Quaternion::operator *=(), ccf_value::operator()(), cmpang::operator()(), EMAN::operator+(), EMAN::operator-(), EMAN::operator/(), EMAN::Quaternion::operator/=(), peak_table::operator<(), EMAN::Util::prb1d(), prb1d(), EMAN::TestImageEllipse::process_inplace(), EMAN::TestImageGradient::process_inplace(), EMAN::NormalizeToLeastSquareProcessor::process_inplace(), EMAN::GradientRemoverProcessor::process_inplace(), EMAN::Util::splint(), subsm_(), and varmx().

#define bi (  )     bi[i-1]

Definition at line 2620 of file util_sparx.cpp.

Referenced by EMAN::Util::fftc_d(), fftc_d(), EMAN::Util::fftc_q(), fftc_q(), EMAN::EMData::onelinenn(), EMAN::EMData::onelinenn_ctf(), EMAN::EMData::onelinenn_ctf_applied(), EMAN::EMData::onelinenn_mult(), and EMAN::TestImageEllipse::process_inplace().

#define br (  )     br[i-1]

Definition at line 2619 of file util_sparx.cpp.

Referenced by EMAN::Util::fftc_d(), fftc_d(), EMAN::Util::fftc_q(), fftc_q(), EMAN::EMData::render_amp24(), and EMAN::EMData::render_ap24().

#define CC (  )     CC [i-1]

Definition at line 6066 of file util_sparx.cpp.

Referenced by EMAN::Util::WTM().

#define cent (  )     out[i+N]

Definition at line 20261 of file util_sparx.cpp.

Referenced by EMAN::Util::cluster_pairwise().

#define circ (  )     circ[i-1]

Definition at line 2137 of file util_sparx.cpp.

Referenced by EMAN::Util::alrl_ms(), alrq(), alrq_ms(), applyws(), Applyws(), EMAN::Util::Frngs(), frngs(), EMAN::Util::Frngs_inv(), EMAN::Util::Polar2D(), EMAN::Util::Polar2Dm(), and EMAN::Util::Polar2Dmi().

#define circ1 (  )     circ1[i-1]

Definition at line 3163 of file util_sparx.cpp.

Referenced by EMAN::Util::Crosrng_e(), crosrng_e(), EMAN::Util::Crosrng_ew(), EMAN::Util::Crosrng_ms(), crosrng_ms(), EMAN::Util::Crosrng_ms_delta(), EMAN::Util::Crosrng_msg(), EMAN::Util::Crosrng_msg_m(), EMAN::Util::Crosrng_msg_s(), EMAN::Util::Crosrng_msg_vec(), EMAN::Util::Crosrng_msg_vec_p(), EMAN::Util::Crosrng_ns(), EMAN::Util::Crosrng_psi_0_180(), EMAN::Util::Crosrng_psi_0_180_no_mirror(), and EMAN::Util::Crosrng_sm_psi().

#define circ1b (  )     circ1b[i-1]

Definition at line 4301 of file util_sparx.cpp.

#define circ1b (  )     circ1b[i-1]

Definition at line 4301 of file util_sparx.cpp.

Referenced by EMAN::Util::Crosrng_msg(), EMAN::Util::Crosrng_msg_m(), EMAN::Util::Crosrng_msg_s(), and EMAN::Util::Crosrng_msg_vec().

#define circ2 (  )     circ2[i-1]

Definition at line 3164 of file util_sparx.cpp.

Referenced by EMAN::Util::Crosrng_e(), crosrng_e(), EMAN::Util::Crosrng_ew(), EMAN::Util::Crosrng_ms(), crosrng_ms(), EMAN::Util::Crosrng_ms_delta(), EMAN::Util::Crosrng_msg(), EMAN::Util::Crosrng_msg_m(), EMAN::Util::Crosrng_msg_s(), EMAN::Util::Crosrng_msg_vec(), EMAN::Util::Crosrng_msg_vec_p(), EMAN::Util::Crosrng_ns(), EMAN::Util::Crosrng_psi_0_180(), EMAN::Util::Crosrng_psi_0_180_no_mirror(), and EMAN::Util::Crosrng_sm_psi().

#define circ2b (  )     circ2b[i-1]

Definition at line 4302 of file util_sparx.cpp.

#define circ2b (  )     circ2b[i-1]

Definition at line 4302 of file util_sparx.cpp.

Referenced by EMAN::Util::Crosrng_msg(), EMAN::Util::Crosrng_msg_m(), EMAN::Util::Crosrng_msg_s(), and EMAN::Util::Crosrng_msg_vec().

#define CP (  )     CP [i-1]

Definition at line 6067 of file util_sparx.cpp.

Referenced by EMAN::Util::WTM().

#define CUBE ( i,
j,
 )     CUBEptr[(i-1)+((j-1)+((k-1)*NY3D))*(size_t)NX3D]

Definition at line 5814 of file util_sparx.cpp.

Referenced by EMAN::Util::BPCQ().

#define data ( i,
 )     group[i*ny+j]

Definition at line 20568 of file util_sparx.cpp.

Referenced by EMAN::EMData::absi(), EMAN::EMData::add(), EMAN::file_store::add_image(), EMAN::TomoAverager::add_image(), EMAN::EMData::addsquare(), EMAN::Refine3DAlignerGrid::align(), EMAN::RotateTranslateFlipAlignerPawel::align(), EMAN::RotateTranslateAlignerPawel::align(), EMAN::RotationalAlignerIterative::align(), EMAN::RotatePrecenterAligner::align(), EMAN::TranslationalAligner::align(), EMAN::RotationalAligner::align_180_ambiguous(), EMAN::EMData::amplitude(), EMAN::EMData::apply_radial_func(), EMAN::EMData::calc_az_dist(), EMAN::EMData::calc_center_of_mass(), EMAN::EMData::calc_highest_locations(), EMAN::EMData::calc_hist(), EMAN::MaskEdgeMeanProcessor::calc_locals(), EMAN::EMData::calc_max_location(), EMAN::EMData::calc_min_location(), EMAN::EMData::calc_n_highest_locations(), EMAN::EMData::calc_radial_dist(), circumference(), EMAN::BoxingTools::classify(), EMAN::EMData::common_lines(), EMAN::EMData::common_lines_real(), EMAN::Util::cyclicshift(), EMAN::PointArray::distmx(), EMAN::EMData::div(), EMAN::EMData::do_ift_inplace(), EMAN::EMData::EMData(), EMAN::EMData::get_attr(), EMAN::EMData::get_circle_mean(), get_data_as_vector(), EMAN::EMData::get_edge_mean(), EMAN::EMData::get_fft_amplitude(), EMAN::EMData::get_fft_phase(), EMAN::file_store::get_image(), EMAN::newfile_store::get_image(), EMAN::EMData::helicise_grid(), EMAN::Util::histc(), EMAN::EMData::imag(), EMAN::ImagicIO2::init_test(), EMAN::EMData::insert_scaled_sum(), EMAN::SingleSpiderIO::is_valid(), EMAN::SpiderIO::is_valid(), EMAN::PifIO::is_valid(), EMAN::OmapIO::is_valid(), EMAN::MrcIO::is_valid(), EMAN::ImagicIO2::is_valid(), EMAN::ImagicIO::is_valid(), EMAN::IcosIO::is_valid(), EMAN::Gatan2IO::is_valid(), EMAN::EmIO::is_valid(), EMAN::EmimIO::is_valid(), EMAN::DM3IO::is_valid(), EMAN::EMData::little_big_dot(), EMAN::EMData::log(), EMAN::EMData::log10(), main(), EMAN::TestUtil::make_image_file_by_mode(), mpi_bcast_recv(), mpi_bcast_send(), mpi_init(), mpi_recv(), mpi_send(), mpi_start(), EMAN::EMData::mult(), EMAN::EMData::mult_complex_efficient(), EMAN::EMData::norm_pad(), EMAN::Util::Normalize_ring(), EMAN::EMData::operator=(), EMAN::EMData::phase(), EMAN::XYZProcessor::process_inplace(), EMAN::CutoffBlockProcessor::process_inplace(), EMAN::DiffBlockProcessor::process_inplace(), EMAN::BoxStatProcessor::process_inplace(), EMAN::AreaProcessor::process_inplace(), EMAN::ComplexPixelProcessor::process_inplace(), EMAN::ToMinvalProcessor::process_inplace(), EMAN::CoordinateProcessor::process_inplace(), EMAN::RealPixelProcessor::process_inplace(), EMAN::ImageProcessor::process_inplace(), EMAN::BoxMedianProcessor::process_pixel(), EMAN::GaussFFTProjector::project3d(), EMAN::Gatan::TagData::read_array_data(), EMAN::EMData::real(), EMAN::EMData::render_amp24(), EMAN::EMData::render_ap24(), EMAN::EMData::ri2ap(), EMAN::EMData::ri2inten(), EMAN::EMData::rot_scale_conv_new(), EMAN::EMData::rot_scale_conv_new_3D(), EMAN::EMData::rot_scale_conv_new_background(), EMAN::EMData::rot_scale_conv_new_background_3D(), EMAN::EMData::rotate_x(), EMAN::MarchingCubes::set_data(), EMAN::Isosurface::set_data(), EMAN::BoxSVDClassifier::setDims(), EMAN::EMData::setup4slice(), EMAN::EMData::sqrt(), EMAN::EMData::sub(), EMAN::EMData::subsquare(), EMAN::EMData::to_value(), EMAN::EMData::update_stat(), EMAN::Util::vareas(), EMAN::TestUtil::verify_image_file_by_mode(), EMAN::EMUtil::vertical_acf(), wustl_mm::SkeletonMaker::VolumeData::VolumeData(), EMAN::U3DWriter::write_clod_mesh_generator_node(), EMAN::RT3DSphereAligner::xform_align_nbest(), and EMAN::RT3DGridAligner::xform_align_nbest().

#define deg_rad   QUADPI/180.0

Definition at line 4682 of file util_sparx.cpp.

Referenced by EMAN::Util::cml_init_rot(), EMAN::Util::cml_line_in3d(), and EMAN::Util::cml_update_rot().

#define deg_to_rad   quadpi/180

Definition at line 7216 of file util_sparx.cpp.

#define dgr_to_rad   quadpi/180

Definition at line 7215 of file util_sparx.cpp.

Referenced by EMAN::Util::ang_to_xyz(), apmq(), aprq2d(), EMAN::Util::even_angles(), and EMAN::ChaoProjector::setdm().

#define DGR_TO_RAD   QUADPI/180

Definition at line 5765 of file util_sparx.cpp.

#define DM (  )     DM[I-1]

Definition at line 5812 of file util_sparx.cpp.

#define DM (  )     DM [I-1]

Definition at line 5812 of file util_sparx.cpp.

Referenced by EMAN::Util::BPCQ(), and EMAN::Util::CANG().

#define dout ( i,
 )     dout[i+maxrin*j]

Definition at line 4300 of file util_sparx.cpp.

#define dout ( i,
 )     dout[i+maxrin*j]

Definition at line 4300 of file util_sparx.cpp.

Referenced by EMAN::Util::Crosrng_msg(), EMAN::Util::Crosrng_msg_m(), and EMAN::Util::Crosrng_msg_s().

#define FALSE   0

Definition at line 7220 of file util_sparx.cpp.

#define FALSE_   (0)

Definition at line 7924 of file util_sparx.cpp.

#define fdata ( i,
 )     fdata[ i-1 + (j-1)*nxdata ]

Definition at line 713 of file util_sparx.cpp.

#define fdata ( i,
 )     fdata[ i-1 + (j-1)*nxdata ]

Definition at line 713 of file util_sparx.cpp.

Referenced by EMAN::Util::quadri(), quadri(), and EMAN::Util::quadri_background().

#define img2_ptr ( i,
j,
 )     img2_ptr[i+(j+(k*ny))*(size_t)nx]

Definition at line 19876 of file util_sparx.cpp.

Referenced by EMAN::Util::addn_img(), EMAN::Util::divn_filter(), EMAN::Util::divn_img(), EMAN::Util::madn_scalar(), EMAN::Util::move_points(), EMAN::Util::muln_img(), EMAN::Util::mult_scalar(), and EMAN::Util::subn_img().

#define img_ptr ( i,
j,
 )     img_ptr[i+(j+(k*ny))*(size_t)nx]

Definition at line 19875 of file util_sparx.cpp.

#define img_ptr ( i,
j,
 )     img_ptr[2*(i-1)+((j-1)+((k-1)*ny))*(size_t)nxo]

Definition at line 19875 of file util_sparx.cpp.

Referenced by EMAN::Util::add_img(), EMAN::Util::add_img2(), EMAN::Util::add_img_abs(), EMAN::Util::addn_img(), EMAN::Util::compress_image_mask(), EMAN::Util::div_filter(), EMAN::Util::div_img(), EMAN::Util::divn_filter(), EMAN::Util::divn_img(), EMAN::Util::hist_comp_freq(), EMAN::Util::mad_scalar(), EMAN::Util::madn_scalar(), EMAN::Util::move_points(), EMAN::Util::mul_img(), EMAN::Util::mul_scalar(), EMAN::Util::muln_img(), EMAN::Util::mult_scalar(), EMAN::Util::pack_complex_to_real(), ReadStackandDist(), ReadStackandDist_Cart(), EMAN::Util::reconstitute_image_mask(), EMAN::Util::set_line(), EMAN::Util::sub_img(), and EMAN::Util::subn_img().

#define inp ( i,
j,
 )     inp[i+(j+(k*ny))*(size_t)nx]

Definition at line 5435 of file util_sparx.cpp.

#define inp ( i,
j,
 )     inp[(i+new_st_x)+((j+new_st_y)+((k+new_st_z)*ny))*(size_t)nx]

Definition at line 5435 of file util_sparx.cpp.

Referenced by EMAN::Util::pad(), and EMAN::Util::window().

#define key (  )     key [i-1]

Definition at line 7229 of file util_sparx.cpp.

Referenced by EMAN::EMUtil::getRenderMinMax(), EMAN::Util::hsortd(), mpi_comm_split(), EMAN::Log::vlog(), EMAN::Util::voronoi(), and EMAN::Util::vrdg().

#define lband (  )     lband [i-1]

Definition at line 7226 of file util_sparx.cpp.

#define mymax ( x,
 )     (((x)>(y))?(x):(y))

Definition at line 7209 of file util_sparx.cpp.

#define mymin ( x,
 )     (((x)<(y))?(x):(y))

Definition at line 7210 of file util_sparx.cpp.

#define new_ptr ( iptr,
jptr,
kptr   )     new_ptr[iptr+(jptr+(kptr*new_ny))*(size_t)new_nx]

Definition at line 5331 of file util_sparx.cpp.

Referenced by EMAN::Util::compress_image_mask(), EMAN::Util::decimate(), and EMAN::Util::reconstitute_image_mask().

#define numr ( i,
 )     numr[(j-1)*3 + i-1]

Definition at line 2138 of file util_sparx.cpp.

Referenced by ali3d_d(), alprbs(), EMAN::Util::alrl_ms(), alrq(), alrq_ms(), apmd(), apmq(), applyws(), apring1(), aprq2d(), EMAN::Util::Crosrng_e(), crosrng_e(), EMAN::Util::Crosrng_ew(), EMAN::Util::Crosrng_ms(), crosrng_ms(), EMAN::Util::Crosrng_ms_delta(), EMAN::Util::Crosrng_msg(), EMAN::Util::Crosrng_msg_m(), EMAN::Util::Crosrng_msg_s(), EMAN::Util::Crosrng_msg_vec(), EMAN::Util::Crosrng_ns(), EMAN::Util::Crosrng_psi_0_180(), EMAN::Util::Crosrng_psi_0_180_no_mirror(), EMAN::Util::Crosrng_sm_psi(), EMAN::Util::ener(), EMAN::Util::ener_tot(), EMAN::Util::Frngs(), frngs(), EMAN::Util::Frngs_inv(), numrinit(), Numrinit(), EMAN::Util::Polar2D(), EMAN::Util::Polar2Dm(), EMAN::Util::Polar2Dmi(), ringwe(), EMAN::Util::sub_fav(), and EMAN::Util::update_fav().

#define old_ptr ( i,
j,
 )     old_ptr[i+(j+(k*ny))*(size_t)nx]

Definition at line 5330 of file util_sparx.cpp.

Referenced by EMAN::Util::decimate().

#define outp ( i,
j,
 )     outp[(i+new_st_x)+((j+new_st_y)+((k+new_st_z)*new_ny))*(size_t)new_nx]

Definition at line 5436 of file util_sparx.cpp.

#define outp ( i,
j,
 )     outp[i+(j+(k*new_ny))*(size_t)new_nx]

Definition at line 5436 of file util_sparx.cpp.

Referenced by EMAN::Util::pad(), and EMAN::Util::window().

#define phi (  )     phi [i-1]

Definition at line 7224 of file util_sparx.cpp.

Referenced by EMAN::file_store::add_image(), EMAN::OrientationGenerator::add_orientation(), ali3d_d(), EMAN::Refine3DAlignerGrid::align(), EMAN::SymAlignProcessor::align(), EMAN::PawelProjector::backproject3d(), EMAN::ChaoProjector::backproject3d(), EMAN::Util::even_angles(), fcalc(), fgcalc(), EMAN::RandomOrientationGenerator::gen_orientations(), EMAN::file_store::get_image(), EMAN::Transform::get_rotation(), EMAN::Util::hsortd(), LBD_Cart(), main(), EMAN::Util::multiref_polar_ali_2d_local(), EMAN::Util::multiref_polar_ali_2d_local_psi(), EMAN::Util::multiref_polar_ali_helical_90_local(), EMAN::Util::multiref_polar_ali_helical_local(), EMAN::TestImageSinewave::process_inplace(), EMAN::ChaoProjector::project3d(), EMAN::FourierGriddingProjector::project3d(), recons3d_4nn(), recons3d_CGLS_mpi_Cart(), recons3d_HyBR_mpi_Cart(), recons3d_sirt_mpi(), recons3d_sirt_mpi_Cart(), EMAN::Transform::set_rotation(), EMAN::ChaoProjector::setdm(), slaed4_(), trans_(), unified(), EMAN::Util::vrdg(), EMAN::RT3DSphereAligner::xform_align_nbest(), and EMAN::RT3DGridAligner::xform_align_nbest().

#define PI2   QUADPI*2

Definition at line 4681 of file util_sparx.cpp.

#define PI2   2*QUADPI

Definition at line 4681 of file util_sparx.cpp.

Referenced by EMAN::Util::cml_weights(), EMAN::Util::ener(), EMAN::Util::ener_tot(), EMAN::Util::sub_fav(), and EMAN::Util::update_fav().

#define PROJ ( i,
 )     PROJptr [i-1+((j-1)*NNNN)]

Definition at line 6063 of file util_sparx.cpp.

#define PROJ ( i,
 )     PROJptr [i-1+((j-1)*NNNN)]

Definition at line 6063 of file util_sparx.cpp.

Referenced by EMAN::Util::WTF(), and EMAN::Util::WTM().

#define q (  )     q[i-1]

Definition at line 3166 of file util_sparx.cpp.

Referenced by EMAN::Util::cluster_pairwise(), EMAN::Quaternion::create_inverse(), EMAN::Util::Crosrng_e(), crosrng_e(), EMAN::Util::Crosrng_ew(), EMAN::Util::Crosrng_ms(), crosrng_ms(), EMAN::Util::Crosrng_ms_delta(), EMAN::Util::Crosrng_msg(), EMAN::Util::Crosrng_msg_s(), EMAN::Util::Crosrng_msg_vec(), EMAN::Util::Crosrng_ns(), EMAN::Util::Crosrng_psi_0_180(), EMAN::Util::Crosrng_psi_0_180_no_mirror(), EMAN::Util::Crosrng_sm_psi(), dcstep_(), GCVmin_Tik(), EMAN::EMData::get_pixel_conv(), EMAN::EMData::get_pixel_filtered(), EMAN::Util::getBaldwinGridWeights(), inside_(), EMAN::Quaternion::interpolate(), EMAN::Util::list_mutation(), EMAN::operator *(), EMAN::Quaternion::operator *=(), EMAN::operator+(), EMAN::Quaternion::operator+=(), EMAN::operator-(), EMAN::Quaternion::operator-=(), EMAN::operator/(), EMAN::Quaternion::operator/=(), EMAN::Util::pw_extract(), EMAN::Quaternion::Quaternion(), recons3d_CGLS_mpi_Cart(), refalin3d_perturbquat(), EMAN::EMData::rot_scale_conv(), EMAN::Quaternion::to_angle(), EMAN::Quaternion::to_axis(), trfind_(), and EMAN::Util::WTF().

#define quadpi   3.141592653589793238462643383279502884197

Definition at line 7214 of file util_sparx.cpp.

Referenced by apmq(), and aprq2d().

#define QUADPI   3.141592653589793238462643383279502884197

Definition at line 5764 of file util_sparx.cpp.

#define QUADPI   3.141592653589793238462643383279502884197

Definition at line 5764 of file util_sparx.cpp.

#define QUADPI   3.141592653589793238462643383279502884197

Definition at line 5764 of file util_sparx.cpp.

#define rad_deg   180.0/QUADPI

Definition at line 4683 of file util_sparx.cpp.

Referenced by EMAN::Util::cml_line_in3d(), EMAN::Util::cml_line_insino(), and EMAN::Util::cml_line_insino_all().

#define rad_to_deg   180/quadpi

Definition at line 7217 of file util_sparx.cpp.

#define rad_to_dgr   180/quadpi

Definition at line 7218 of file util_sparx.cpp.

#define RI ( i,
 )     RI [(i-1) + ((j-1)*3)]

Definition at line 6065 of file util_sparx.cpp.

Referenced by EMAN::Util::WTM().

#define sign ( x,
 )     (((((y)>0)?(1):(-1))*(y!=0))*(x))

Definition at line 7211 of file util_sparx.cpp.

Referenced by EMAN::Processor::EMFourierFilterFunc(), EMAN::nnSSNR_ctfReconstructor::setup(), EMAN::nn4_ctf_rectReconstructor::setup(), and EMAN::nn4_ctfReconstructor::setup().

#define SS ( I,
 )     SS [I-1 + (J-1)*6]

Definition at line 6064 of file util_sparx.cpp.

#define SS ( I,
 )     SS [I-1 + (J-1)*6]

Definition at line 6064 of file util_sparx.cpp.

#define SS (  )     SS [I-1]

Definition at line 6064 of file util_sparx.cpp.

Referenced by EMAN::Util::CANG(), EMAN::Util::WTF(), and EMAN::Util::WTM().

#define t (  )     t[i-1]

Definition at line 3165 of file util_sparx.cpp.

Referenced by EMAN::OrientationGenerator::add_orientation(), EMAN::Util::ali2d_ccf_list(), EMAN::RT3DSphereAligner::align(), EMAN::RT3DGridAligner::align(), EMAN::Refine3DAlignerGrid::align(), EMAN::Refine3DAlignerQuaternion::align(), EMAN::SymAlignProcessorQuat::align(), EMAN::RefineAligner::align(), EMAN::SymAlignProcessor::align(), EMAN::RTFSlowExhaustiveAligner::align(), EMAN::RTFExhaustiveAligner::align(), EMAN::RotateFlipAlignerIterative::align(), EMAN::RotateFlipAligner::align(), EMAN::RotateTranslateFlipAlignerIterative::align(), EMAN::RotateTranslateFlipAligner::align(), EMAN::RotateTranslateAligner::align(), EMAN::RotateTranslateAlignerIterative::align(), EMAN::TranslationalAligner::align(), EMAN::Util::array_mutation(), bmv_(), EMAN::Util::BPCQ(), EMAN::Symmetry3D::cache_au_planes(), EMAN::EMData::calc_max_location(), EMAN::EMData::calc_min_location(), EMAN::EMData::calc_mutual_correlation(), EMAN::EMData::common_lines_real(), crlist_(), EMAN::Util::Crosrng_e(), crosrng_e(), EMAN::Util::Crosrng_ew(), EMAN::Util::Crosrng_ms(), crosrng_ms(), EMAN::Util::Crosrng_ms_delta(), EMAN::Util::Crosrng_msg(), EMAN::Util::Crosrng_msg_m(), EMAN::Util::Crosrng_msg_vec(), EMAN::Util::Crosrng_psi_0_180(), EMAN::EMData::cut_slice(), EMAN::EMData::do_radon(), EMAN::EMData::dot_rotate_translate(), EMAN::TestUtil::emobject_to_py(), EMAN::TestUtil::emobject_transformarray_to_py(), EMAN::EMData::extract_box(), EMAN::Util::fftc_d(), fftc_d(), EMAN::Util::fftc_q(), fftc_q(), EMAN::Util::fftr_d(), fftr_d(), EMAN::Util::fftr_q(), fftr_q(), formk_(), EMAN::RandomOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::TetrahedralSym::get_asym_unit_points(), EMAN::PlatonicSym::get_asym_unit_points(), EMAN::EMData::get_attr(), EMAN::ImagicIO2::get_datatype_from_name(), EMAN::ImagicIO::get_datatype_from_name(), EMAN::TestUtil::get_debug_transform(), EMAN::EMData::get_pixel_filtered(), EMAN::Transform::get_sym_proj(), EMAN::Util::get_time_label(), EMAN::Symmetry3D::get_touching_au_transforms(), EMAN::Transform::icos_5_to_2(), EMAN::nnSSNR_ctfReconstructor::insert_padfft_slice(), EMAN::nn4_ctf_rectReconstructor::insert_padfft_slice(), EMAN::nn4_ctfReconstructor::insert_padfft_slice(), EMAN::nnSSNR_Reconstructor::insert_padfft_slice(), EMAN::nn4_rectReconstructor::insert_padfft_slice(), EMAN::nn4Reconstructor::insert_padfft_slice(), EMAN::nnSSNR_ctfReconstructor::insert_slice(), EMAN::nn4_ctf_rectReconstructor::insert_slice(), EMAN::nn4_ctfReconstructor::insert_slice(), EMAN::nnSSNR_Reconstructor::insert_slice(), EMAN::nn4_rectReconstructor::insert_slice(), EMAN::nn4Reconstructor::insert_slice(), EMAN::BackProjectionReconstructor::insert_slice(), intrsc_(), EMAN::Transform::inverse(), EMAN::Vec2< Type >::length(), EMAN::Vec3< Type >::length(), EMAN::Vec4< Type >::length(), EMAN::Util::list_mutation(), main(), EMAN::EMData::max_3D_pixel_error(), EMAN::Util::multiref_polar_ali_2d_local(), EMAN::Util::multiref_polar_ali_2d_local_psi(), EMAN::Util::multiref_polar_ali_helical_90_local(), EMAN::Util::multiref_polar_ali_helical_local(), EMAN::Transform::negate(), EMAN::FloatPoint::operator vector(), EMAN::FloatSize::operator vector(), EMAN::padfft_slice(), EMAN::Symmetry3D::point_in_which_asym_unit(), EMAN::Util::point_is_in_triangle_2d(), EMAN::PawelProjector::prepcubes(), EMAN::BackProjectionReconstructor::preprocess_slice(), EMAN::FourierReconstructor::preprocess_slice(), EMAN::Randnum::print_generator_type(), EMAN::ScaleTransformProcessor::process(), EMAN::TransformProcessor::process(), EMAN::ApplySymProcessor::process(), EMAN::TomoTiltEdgeMaskProcessor::process_inplace(), EMAN::TestTomoImage::process_inplace(), EMAN::Rotate180Processor::process_inplace(), EMAN::ScaleTransformProcessor::process_inplace(), EMAN::TransformProcessor::process_inplace(), EMAN::TestImageEllipse::process_inplace(), EMAN::TestImageHollowEllipse::process_inplace(), EMAN::IterBinMaskProcessor::process_inplace(), EMAN::AutoMask3DProcessor::process_inplace(), EMAN::SymSearchProcessor::process_inplace(), EMAN::ACFCenterProcessor::process_inplace(), EMAN::PhaseToMassCenterProcessor::process_inplace(), EMAN::ToMassCenterProcessor::process_inplace(), EMAN::FlipProcessor::process_inplace(), EMAN::NormalizeToLeastSquareProcessor::process_inplace(), EMAN::CutoffBlockProcessor::process_inplace(), EMAN::ImageProcessor::process_inplace(), EMAN::BoxMedianProcessor::process_pixel(), EMAN::StandardProjector::project3d(), EMAN::Symmetry3D::reduce(), refalifn(), refalifn3dquat(), EMAN::EMData::render_amp24(), EMAN::EMData::render_ap24(), EMAN::EMData::rot_scale_conv(), EMAN::EMData::rot_scale_conv7(), EMAN::EMData::rot_scale_trans(), EMAN::EMData::rot_scale_trans_background(), EMAN::EMData::rotate(), EMAN::Util::rotate_phase_origin(), EMAN::EMData::rotate_translate(), EMAN::Matrix4::rotation(), EMAN::EMData::scale(), EMAN::EMData::set_attr_python(), setulb_(), slaed2_(), slaed8_(), slamch_(), slasq2_(), slasq3_(), slasv2_(), sormlq_(), sormqr_(), subsm_(), EMAN::MarchingCubes::surface_face_z(), symquat(), test_shared_pointer(), EMAN::Transform::tet_3_to_2(), EMAN::Gatan::to_em_datatype(), EMAN::TransformProcessor::transform(), EMAN::EMData::translate(), EMAN::Transform::transpose(), trplot_(), EMAN::EMData::unwrap(), EMAN::EMData::unwrap_largerR(), varmx(), vrplot_(), EMAN::SpiderIO::write_single_header(), EMAN::RT3DSymmetryAligner::xform_align_nbest(), EMAN::RT3DSphereAligner::xform_align_nbest(), and EMAN::RT3DGridAligner::xform_align_nbest().

#define t7 (  )     t7[i-1]

Definition at line 3168 of file util_sparx.cpp.

Referenced by EMAN::Util::Crosrng_e(), crosrng_e(), EMAN::Util::Crosrng_ew(), EMAN::Util::Crosrng_ms(), crosrng_ms(), EMAN::Util::Crosrng_ns(), EMAN::Util::Crosrng_psi_0_180(), EMAN::Util::Crosrng_psi_0_180_no_mirror(), and EMAN::Util::Crosrng_sm_psi().

#define tab1 (  )     tab1[i-1]

Definition at line 2617 of file util_sparx.cpp.

Referenced by EMAN::Util::fftc_d(), fftc_d(), EMAN::Util::fftc_q(), fftc_q(), EMAN::Util::fftr_d(), fftr_d(), EMAN::Util::fftr_q(), and fftr_q().

#define theta (  )     theta [i-1]

Definition at line 7223 of file util_sparx.cpp.

Referenced by ali3d_d(), EMAN::PawelProjector::backproject3d(), EMAN::ChaoProjector::backproject3d(), EMAN::Util::even_angles(), fcalc(), fgcalc(), EMAN::file_store::get_image(), EMAN::Util::hsortd(), LBD_Cart(), main(), mainlb_(), EMAN::Util::multiref_polar_ali_2d_local(), EMAN::Util::multiref_polar_ali_2d_local_psi(), EMAN::Util::multiref_polar_ali_helical_90_local(), EMAN::Util::multiref_polar_ali_helical_local(), EMAN::ChaoProjector::project3d(), EMAN::FourierGriddingProjector::project3d(), recons3d_4nn(), recons3d_CGLS_mpi_Cart(), recons3d_HyBR_mpi_Cart(), recons3d_sirt_mpi(), recons3d_sirt_mpi_Cart(), EMAN::Transform::set_rotation(), EMAN::ChaoProjector::setdm(), trans_(), unified(), and EMAN::Util::vrdg().

#define thetast (  )     thetast [i-1]

Definition at line 7228 of file util_sparx.cpp.

#define TRUE   1

Definition at line 7219 of file util_sparx.cpp.

#define TRUE_   (1)

Definition at line 7923 of file util_sparx.cpp.

#define ts (  )     ts [i-1]

Definition at line 7227 of file util_sparx.cpp.

#define VP (  )     VP [i-1]

Definition at line 6068 of file util_sparx.cpp.

Referenced by EMAN::Util::WTM().

#define VV (  )     VV [i-1]

Definition at line 6069 of file util_sparx.cpp.

Referenced by EMAN::Util::WTM().

#define W ( i,
 )     Wptr [i-1+((j-1)*Wnx)]

Definition at line 6062 of file util_sparx.cpp.

#define W ( i,
 )     Wptr [i-1+((j-1)*Wnx)]

Definition at line 6062 of file util_sparx.cpp.

Referenced by EMAN::Util::getBaldwinGridWeights(), EMAN::Util::WTF(), and EMAN::Util::WTM().

#define weight (  )     weight [i-1]

Definition at line 7225 of file util_sparx.cpp.

Referenced by ali3d_d(), EMAN::FRCCmp::cmp(), EMAN::WienerFourierReconstructor::do_insert_slice_work(), EMAN::BackProjectionReconstructor::insert_slice(), and EMAN::Util::vrdg().

#define xcmplx ( i,
 )     xcmplx [(j-1)*2 + i-1]

Definition at line 2618 of file util_sparx.cpp.

Referenced by EMAN::Util::fftr_d(), fftr_d(), EMAN::Util::fftr_q(), and fftr_q().

#define xim ( i,
 )     xim[(j-1)*nsam + i-1]

Definition at line 2139 of file util_sparx.cpp.

Referenced by EMAN::Util::bilinear(), EMAN::Util::Polar2D(), and EMAN::Util::Polar2Dm().


Function Documentation

int addnod_ ( int *  ,
int *  ,
double *  ,
double *  ,
double *  ,
int *  ,
int *  ,
int *  ,
int *  ,
int *   
)

Definition at line 8371 of file util_sparx.cpp.

References abs, bdyadd_(), covsph_(), intadd_(), lstptr_(), swap_(), swptst_(), and trfind_().

Referenced by trmesh_(), and EMAN::Util::trmsh3_().

08374 {
08375     /* Initialized data */
08376 
08377     static double tol = 0.;
08378 
08379     /* System generated locals */
08380     int i__1;
08381 
08382     /* Local variables */
08383     static int l;
08384     static double p[3], b1, b2, b3;
08385     static int i1, i2, i3, kk, lp, in1, io1, io2, km1, lpf, ist, lpo1;
08386     /* Subroutine */ int swap_(int *, int *, int *,
08387             int *, int *, int *, int *, int *);
08388     static int lpo1s;
08389     /* Subroutine */ int bdyadd_(int *, int *, int *,
08390             int *, int *, int *, int *), intadd_(int *,
08391             int *, int *, int *, int *, int *, int *,
08392             int *), trfind_(int *, double *, int *,
08393             double *, double *, double *, int *, int *,
08394             int *, double *, double *, double *, int *,
08395             int *, int *), covsph_(int *, int *, int *,
08396             int *, int *, int *);
08397     int lstptr_(int *, int *, int *, int *);
08398     long int swptst_(int *, int *, int *, int *,
08399             double *, double *, double *);
08400 
08401 
08402 /* *********************************************************** */
08403 
08404 /*                                              From STRIPACK */
08405 /*                                            Robert J. Renka */
08406 /*                                  Dept. of Computer Science */
08407 /*                                       Univ. of North Texas */
08408 /*                                           renka@cs.unt.edu */
08409 /*                                                   01/08/03 */
08410 
08411 /*   This subroutine adds node K to a triangulation of the */
08412 /* convex hull of nodes 1,...,K-1, producing a triangulation */
08413 /* of the convex hull of nodes 1,...,K. */
08414 
08415 /*   The algorithm consists of the following steps:  node K */
08416 /* is located relative to the triangulation (TRFIND), its */
08417 /* index is added to the data structure (INTADD or BDYADD), */
08418 /* and a sequence of swaps (SWPTST and SWAP) are applied to */
08419 /* the arcs opposite K so that all arcs incident on node K */
08420 /* and opposite node K are locally optimal (satisfy the cir- */
08421 /* cumcircle test).  Thus, if a Delaunay triangulation is */
08422 /* input, a Delaunay triangulation will result. */
08423 
08424 
08425 /* On input: */
08426 
08427 /*       NST = Index of a node at which TRFIND begins its */
08428 /*             search.  Search time depends on the proximity */
08429 /*             of this node to K.  If NST < 1, the search is */
08430 /*             begun at node K-1. */
08431 
08432 /*       K = Nodal index (index for X, Y, Z, and LEND) of the */
08433 /*           new node to be added.  K .GE. 4. */
08434 
08435 /*       X,Y,Z = Arrays of length .GE. K containing Car- */
08436 /*               tesian coordinates of the nodes. */
08437 /*               (X(I),Y(I),Z(I)) defines node I for */
08438 /*               I = 1,...,K. */
08439 
08440 /* The above parameters are not altered by this routine. */
08441 
08442 /*       LIST,LPTR,LEND,LNEW = Data structure associated with */
08443 /*                             the triangulation of nodes 1 */
08444 /*                             to K-1.  The array lengths are */
08445 /*                             assumed to be large enough to */
08446 /*                             add node K.  Refer to Subrou- */
08447 /*                             tine TRMESH. */
08448 
08449 /* On output: */
08450 
08451 /*       LIST,LPTR,LEND,LNEW = Data structure updated with */
08452 /*                             the addition of node K as the */
08453 /*                             last entry unless IER .NE. 0 */
08454 /*                             and IER .NE. -3, in which case */
08455 /*                             the arrays are not altered. */
08456 
08457 /*       IER = Error indicator: */
08458 /*             IER =  0 if no errors were encountered. */
08459 /*             IER = -1 if K is outside its valid range */
08460 /*                      on input. */
08461 /*             IER = -2 if all nodes (including K) are col- */
08462 /*                      linear (lie on a common geodesic). */
08463 /*             IER =  L if nodes L and K coincide for some */
08464 /*                      L < K.  Refer to TOL below. */
08465 
08466 /* Modules required by ADDNOD:  BDYADD, COVSPH, INSERT, */
08467 /*                                INTADD, JRAND, LSTPTR, */
08468 /*                                STORE, SWAP, SWPTST, */
08469 /*                                TRFIND */
08470 
08471 /* Intrinsic function called by ADDNOD:  ABS */
08472 
08473 /* *********************************************************** */
08474 
08475 
08476 /* Local parameters: */
08477 
08478 /* B1,B2,B3 = Unnormalized barycentric coordinates returned */
08479 /*              by TRFIND. */
08480 /* I1,I2,I3 = Vertex indexes of a triangle containing K */
08481 /* IN1 =      Vertex opposite K:  first neighbor of IO2 */
08482 /*              that precedes IO1.  IN1,IO1,IO2 are in */
08483 /*              counterclockwise order. */
08484 /* IO1,IO2 =  Adjacent neighbors of K defining an arc to */
08485 /*              be tested for a swap */
08486 /* IST =      Index of node at which TRFIND begins its search */
08487 /* KK =       Local copy of K */
08488 /* KM1 =      K-1 */
08489 /* L =        Vertex index (I1, I2, or I3) returned in IER */
08490 /*              if node K coincides with a vertex */
08491 /* LP =       LIST pointer */
08492 /* LPF =      LIST pointer to the first neighbor of K */
08493 /* LPO1 =     LIST pointer to IO1 */
08494 /* LPO1S =    Saved value of LPO1 */
08495 /* P =        Cartesian coordinates of node K */
08496 /* TOL =      Tolerance defining coincident nodes:  bound on */
08497 /*              the deviation from 1 of the cosine of the */
08498 /*              angle between the nodes. */
08499 /*              Note that |1-cos(A)| is approximately A*A/2. */
08500 
08501     /* Parameter adjustments */
08502     --lend;
08503     --z__;
08504     --y;
08505     --x;
08506     --list;
08507     --lptr;
08508 
08509     /* Function Body */
08510 
08511     kk = *k;
08512     if (kk < 4) {
08513         goto L3;
08514     }
08515 
08516 /* Initialization: */
08517     km1 = kk - 1;
08518     ist = *nst;
08519     if (ist < 1) {
08520         ist = km1;
08521     }
08522     p[0] = x[kk];
08523     p[1] = y[kk];
08524     p[2] = z__[kk];
08525 
08526 /* Find a triangle (I1,I2,I3) containing K or the rightmost */
08527 /*   (I1) and leftmost (I2) visible boundary nodes as viewed */
08528 /*   from node K. */
08529     trfind_(&ist, p, &km1, &x[1], &y[1], &z__[1], &list[1], &lptr[1], &lend[1]
08530             , &b1, &b2, &b3, &i1, &i2, &i3);
08531 
08532 /*   Test for collinear or (nearly) duplicate nodes. */
08533 
08534     if (i1 == 0) {
08535         goto L4;
08536     }
08537     l = i1;
08538     if (p[0] * x[l] + p[1] * y[l] + p[2] * z__[l] >= 1. - tol) {
08539         goto L5;
08540     }
08541     l = i2;
08542     if (p[0] * x[l] + p[1] * y[l] + p[2] * z__[l] >= 1. - tol) {
08543         goto L5;
08544     }
08545     if (i3 != 0) {
08546         l = i3;
08547         if (p[0] * x[l] + p[1] * y[l] + p[2] * z__[l] >= 1. - tol) {
08548             goto L5;
08549         }
08550         intadd_(&kk, &i1, &i2, &i3, &list[1], &lptr[1], &lend[1], lnew);
08551     } else {
08552         if (i1 != i2) {
08553             bdyadd_(&kk, &i1, &i2, &list[1], &lptr[1], &lend[1], lnew);
08554         } else {
08555             covsph_(&kk, &i1, &list[1], &lptr[1], &lend[1], lnew);
08556         }
08557     }
08558     *ier = 0;
08559 
08560 /* Initialize variables for optimization of the */
08561 /*   triangulation. */
08562     lp = lend[kk];
08563     lpf = lptr[lp];
08564     io2 = list[lpf];
08565     lpo1 = lptr[lpf];
08566     io1 = (i__1 = list[lpo1], abs(i__1));
08567 
08568 /* Begin loop:  find the node opposite K. */
08569 
08570 L1:
08571     lp = lstptr_(&lend[io1], &io2, &list[1], &lptr[1]);
08572     if (list[lp] < 0) {
08573         goto L2;
08574     }
08575     lp = lptr[lp];
08576     in1 = (i__1 = list[lp], abs(i__1));
08577 
08578 /* Swap test:  if a swap occurs, two new arcs are */
08579 /*             opposite K and must be tested. */
08580 
08581     lpo1s = lpo1;
08582     if (! swptst_(&in1, &kk, &io1, &io2, &x[1], &y[1], &z__[1])) {
08583         goto L2;
08584     }
08585     swap_(&in1, &kk, &io1, &io2, &list[1], &lptr[1], &lend[1], &lpo1);
08586     if (lpo1 == 0) {
08587 
08588 /*   A swap is not possible because KK and IN1 are already */
08589 /*     adjacent.  This error in SWPTST only occurs in the */
08590 /*     neutral case and when there are nearly duplicate */
08591 /*     nodes. */
08592 
08593         lpo1 = lpo1s;
08594         goto L2;
08595     }
08596     io1 = in1;
08597     goto L1;
08598 
08599 /* No swap occurred.  Test for termination and reset */
08600 /*   IO2 and IO1. */
08601 
08602 L2:
08603     if (lpo1 == lpf || list[lpo1] < 0) {
08604         return 0;
08605     }
08606     io2 = io1;
08607     lpo1 = lptr[lpo1];
08608     io1 = (i__1 = list[lpo1], abs(i__1));
08609     goto L1;
08610 
08611 /* KK < 4. */
08612 
08613 L3:
08614     *ier = -1;
08615     return 0;
08616 
08617 /* All nodes are collinear. */
08618 
08619 L4:
08620     *ier = -2;
08621     return 0;
08622 
08623 /* Nodes L and K coincide. */
08624 
08625 L5:
08626     *ier = l;
08627     return 0;
08628 } /* addnod_ */

double angle_ ( double *  v1,
double *  v2,
double *  v3 
)

Definition at line 8630 of file util_sparx.cpp.

References left_(), and sqrt().

Referenced by areav_new__().

08631 {
08632     /* System generated locals */
08633     double ret_val;
08634 
08635     /* Builtin functions */
08636     //double sqrt(double), acos(double);
08637 
08638     /* Local variables */
08639     static double a;
08640     static int i__;
08641     static double ca, s21, s23, u21[3], u23[3];
08642 
08643 
08644 /* *********************************************************** */
08645 
08646 /*                                              From STRIPACK */
08647 /*                                            Robert J. Renka */
08648 /*                                  Dept. of Computer Science */
08649 /*                                       Univ. of North Texas */
08650 /*                                           renka@cs.unt.edu */
08651 /*                                                   06/03/03 */
08652 
08653 /*   Given a sequence of three nodes (V1,V2,V3) on the sur- */
08654 /* face of the unit sphere, this function returns the */
08655 /* interior angle at V2 -- the dihedral angle between the */
08656 /* plane defined by V2 and V3 (and the origin) and the plane */
08657 /* defined by V2 and V1 or, equivalently, the angle between */
08658 /* the normals V2 X V3 and V2 X V1.  Note that the angle is */
08659 /* in the range 0 to Pi if V3 Left V1->V2, Pi to 2*Pi other- */
08660 /* wise.  The surface area of a spherical polygon with CCW- */
08661 /* ordered vertices V1, V2, ..., Vm is Asum - (m-2)*Pi, where */
08662 /* Asum is the sum of the m interior angles computed from the */
08663 /* sequences (Vm,V1,V2), (V1,V2,V3), (V2,V3,V4), ..., */
08664 /* (Vm-1,Vm,V1). */
08665 
08666 
08667 /* On input: */
08668 
08669 /*       V1,V2,V3 = Arrays of length 3 containing the Carte- */
08670 /*                  sian coordinates of unit vectors.  These */
08671 /*                  vectors, if nonzero, are implicitly */
08672 /*                  scaled to have length 1. */
08673 
08674 /* Input parameters are not altered by this function. */
08675 
08676 /* On output: */
08677 
08678 /*       ANGLE = Angle defined above, or 0 if V2 X V1 = 0 or */
08679 /*               V2 X V3 = 0. */
08680 
08681 /* Module required by ANGLE:  LEFT */
08682 
08683 /* Intrinsic functions called by ANGLE:  ACOS, SQRT */
08684 
08685 /* *********************************************************** */
08686 
08687 
08688 /* Local parameters: */
08689 
08690 /* A =       Interior angle at V2 */
08691 /* CA =      cos(A) */
08692 /* I =       DO-loop index and index for U21 and U23 */
08693 /* S21,S23 = Sum of squared components of U21 and U23 */
08694 /* U21,U23 = Unit normal vectors to the planes defined by */
08695 /*             pairs of triangle vertices */
08696 
08697 
08698 /* Compute cross products U21 = V2 X V1 and U23 = V2 X V3. */
08699 
08700     /* Parameter adjustments */
08701     --v3;
08702     --v2;
08703     --v1;
08704 
08705     /* Function Body */
08706     u21[0] = v2[2] * v1[3] - v2[3] * v1[2];
08707     u21[1] = v2[3] * v1[1] - v2[1] * v1[3];
08708     u21[2] = v2[1] * v1[2] - v2[2] * v1[1];
08709 
08710     u23[0] = v2[2] * v3[3] - v2[3] * v3[2];
08711     u23[1] = v2[3] * v3[1] - v2[1] * v3[3];
08712     u23[2] = v2[1] * v3[2] - v2[2] * v3[1];
08713 
08714 /* Normalize U21 and U23 to unit vectors. */
08715 
08716     s21 = 0.;
08717     s23 = 0.;
08718     for (i__ = 1; i__ <= 3; ++i__) {
08719         s21 += u21[i__ - 1] * u21[i__ - 1];
08720         s23 += u23[i__ - 1] * u23[i__ - 1];
08721 /* L1: */
08722     }
08723 
08724 /* Test for a degenerate triangle associated with collinear */
08725 /*   vertices. */
08726 
08727     if (s21 == 0. || s23 == 0.) {
08728         ret_val = 0.;
08729         return ret_val;
08730     }
08731     s21 = sqrt(s21);
08732     s23 = sqrt(s23);
08733     for (i__ = 1; i__ <= 3; ++i__) {
08734         u21[i__ - 1] /= s21;
08735         u23[i__ - 1] /= s23;
08736 /* L2: */
08737     }
08738 
08739 /* Compute the angle A between normals: */
08740 
08741 /*   CA = cos(A) = <U21,U23> */
08742 
08743     ca = u21[0] * u23[0] + u21[1] * u23[1] + u21[2] * u23[2];
08744     if (ca < -1.) {
08745         ca = -1.;
08746     }
08747     if (ca > 1.) {
08748         ca = 1.;
08749     }
08750     a = acos(ca);
08751 
08752 /* Adjust A to the interior angle:  A > Pi iff */
08753 /*   V3 Right V1->V2. */
08754 
08755     if (! left_(&v1[1], &v1[2], &v1[3], &v2[1], &v2[2], &v2[3], &v3[1], &v3[2]
08756             , &v3[3])) {
08757         a = acos(-1.) * 2. - a;
08758     }
08759     ret_val = a;
08760     return ret_val;
08761 } /* angle_ */

double areas_ ( double *  v1,
double *  v2,
double *  v3 
)

Definition at line 8763 of file util_sparx.cpp.

References sqrt().

Referenced by EMAN::Util::areav_().

08764 {
08765     /* System generated locals */
08766     double ret_val;
08767 
08768     /* Builtin functions */
08769     //double sqrt(double), acos(double);
08770 
08771     /* Local variables */
08772     static int i__;
08773     static double a1, a2, a3, s12, s31, s23, u12[3], u23[3], u31[3], ca1,
08774             ca2, ca3;
08775 
08776 
08777 /* *********************************************************** */
08778 
08779 /*                                              From STRIPACK */
08780 /*                                            Robert J. Renka */
08781 /*                                  Dept. of Computer Science */
08782 /*                                       Univ. of North Texas */
08783 /*                                           renka@cs.unt.edu */
08784 /*                                                   06/22/98 */
08785 
08786 /*   This function returns the area of a spherical triangle */
08787 /* on the unit sphere. */
08788 
08789 
08790 /* On input: */
08791 
08792 /*       V1,V2,V3 = Arrays of length 3 containing the Carte- */
08793 /*                  sian coordinates of unit vectors (the */
08794 /*                  three triangle vertices in any order). */
08795 /*                  These vectors, if nonzero, are implicitly */
08796 /*                  scaled to have length 1. */
08797 
08798 /* Input parameters are not altered by this function. */
08799 
08800 /* On output: */
08801 
08802 /*       AREAS = Area of the spherical triangle defined by */
08803 /*               V1, V2, and V3 in the range 0 to 2*PI (the */
08804 /*               area of a hemisphere).  AREAS = 0 (or 2*PI) */
08805 /*               if and only if V1, V2, and V3 lie in (or */
08806 /*               close to) a plane containing the origin. */
08807 
08808 /* Modules required by AREAS:  None */
08809 
08810 /* Intrinsic functions called by AREAS:  ACOS, SQRT */
08811 
08812 /* *********************************************************** */
08813 
08814 
08815 /* Local parameters: */
08816 
08817 /* A1,A2,A3 =    Interior angles of the spherical triangle */
08818 /* CA1,CA2,CA3 = cos(A1), cos(A2), and cos(A3), respectively */
08819 /* I =           DO-loop index and index for Uij */
08820 /* S12,S23,S31 = Sum of squared components of U12, U23, U31 */
08821 /* U12,U23,U31 = Unit normal vectors to the planes defined by */
08822 /*                 pairs of triangle vertices */
08823 
08824 
08825 /* Compute cross products Uij = Vi X Vj. */
08826 
08827     /* Parameter adjustments */
08828     --v3;
08829     --v2;
08830     --v1;
08831 
08832     /* Function Body */
08833     u12[0] = v1[2] * v2[3] - v1[3] * v2[2];
08834     u12[1] = v1[3] * v2[1] - v1[1] * v2[3];
08835     u12[2] = v1[1] * v2[2] - v1[2] * v2[1];
08836 
08837     u23[0] = v2[2] * v3[3] - v2[3] * v3[2];
08838     u23[1] = v2[3] * v3[1] - v2[1] * v3[3];
08839     u23[2] = v2[1] * v3[2] - v2[2] * v3[1];
08840 
08841     u31[0] = v3[2] * v1[3] - v3[3] * v1[2];
08842     u31[1] = v3[3] * v1[1] - v3[1] * v1[3];
08843     u31[2] = v3[1] * v1[2] - v3[2] * v1[1];
08844 
08845 /* Normalize Uij to unit vectors. */
08846 
08847     s12 = 0.;
08848     s23 = 0.;
08849     s31 = 0.;
08850     for (i__ = 1; i__ <= 3; ++i__) {
08851         s12 += u12[i__ - 1] * u12[i__ - 1];
08852         s23 += u23[i__ - 1] * u23[i__ - 1];
08853         s31 += u31[i__ - 1] * u31[i__ - 1];
08854 /* L2: */
08855     }
08856 
08857 /* Test for a degenerate triangle associated with collinear */
08858 /*   vertices. */
08859 
08860     if (s12 == 0. || s23 == 0. || s31 == 0.) {
08861         ret_val = 0.;
08862         return ret_val;
08863     }
08864     s12 = sqrt(s12);
08865     s23 = sqrt(s23);
08866     s31 = sqrt(s31);
08867     for (i__ = 1; i__ <= 3; ++i__) {
08868         u12[i__ - 1] /= s12;
08869         u23[i__ - 1] /= s23;
08870         u31[i__ - 1] /= s31;
08871 /* L3: */
08872     }
08873 
08874 /* Compute interior angles Ai as the dihedral angles between */
08875 /*   planes: */
08876 /*           CA1 = cos(A1) = -<U12,U31> */
08877 /*           CA2 = cos(A2) = -<U23,U12> */
08878 /*           CA3 = cos(A3) = -<U31,U23> */
08879 
08880     ca1 = -u12[0] * u31[0] - u12[1] * u31[1] - u12[2] * u31[2];
08881     ca2 = -u23[0] * u12[0] - u23[1] * u12[1] - u23[2] * u12[2];
08882     ca3 = -u31[0] * u23[0] - u31[1] * u23[1] - u31[2] * u23[2];
08883     if (ca1 < -1.) {
08884         ca1 = -1.;
08885     }
08886     if (ca1 > 1.) {
08887         ca1 = 1.;
08888     }
08889     if (ca2 < -1.) {
08890         ca2 = -1.;
08891     }
08892     if (ca2 > 1.) {
08893         ca2 = 1.;
08894     }
08895     if (ca3 < -1.) {
08896         ca3 = -1.;
08897     }
08898     if (ca3 > 1.) {
08899         ca3 = 1.;
08900     }
08901     a1 = acos(ca1);
08902     a2 = acos(ca2);
08903     a3 = acos(ca3);
08904 
08905 /* Compute AREAS = A1 + A2 + A3 - PI. */
08906 
08907     ret_val = a1 + a2 + a3 - acos(-1.);
08908     if (ret_val < 0.) {
08909         ret_val = 0.;
08910     }
08911     return ret_val;
08912 } /* areas_ */

double areav_new__ ( int *  k,
int *  n,
double *  x,
double *  y,
double *  z__,
int *  list,
int *  lptr,
int *  lend,
int *  ier 
)

Definition at line 9117 of file util_sparx.cpp.

References angle_(), circum_(), and ierr.

09120 {
09121     /* System generated locals */
09122     double ret_val = 0;
09123 
09124     /* Builtin functions */
09125     //double acos(double);
09126 
09127     /* Local variables */
09128     static int m;
09129     static double c1[3], c2[3], c3[3];
09130     static int n1, n2, n3;
09131     static double v1[3], v2[3], v3[3];
09132     static int lp;
09133     static double c1s[3], c2s[3];
09134     static int lpl, ierr;
09135     static double asum;
09136     double angle_(double *, double *, double *);
09137     static float areav;
09138 
09139 
09140 /* *********************************************************** */
09141 
09142 /*                                            Robert J. Renka */
09143 /*                                  Dept. of Computer Science */
09144 /*                                       Univ. of North Texas */
09145 /*                                           renka@cs.unt.edu */
09146 /*                                                   06/03/03 */
09147 
09148 /*   Given a Delaunay triangulation and the index K of an */
09149 /* interior node, this subroutine returns the (surface) area */
09150 /* of the Voronoi region associated with node K.  The Voronoi */
09151 /* region is the polygon whose vertices are the circumcenters */
09152 /* of the triangles that contain node K, where a triangle */
09153 /* circumcenter is the point (unit vector) lying at the same */
09154 /* angular distance from the three vertices and contained in */
09155 /* the same hemisphere as the vertices.  The Voronoi region */
09156 /* area is computed as Asum-(m-2)*Pi, where m is the number */
09157 /* of Voronoi vertices (neighbors of K) and Asum is the sum */
09158 /* of interior angles at the vertices. */
09159 
09160 
09161 /* On input: */
09162 
09163 /*       K = Nodal index in the range 1 to N. */
09164 
09165 /*       N = Number of nodes in the triangulation.  N > 3. */
09166 
09167 /*       X,Y,Z = Arrays of length N containing the Cartesian */
09168 /*               coordinates of the nodes (unit vectors). */
09169 
09170 /*       LIST,LPTR,LEND = Data structure defining the trian- */
09171 /*                        gulation.  Refer to Subroutine */
09172 /*                        TRMESH. */
09173 
09174 /* Input parameters are not altered by this function. */
09175 
09176 /* On output: */
09177 
09178 /*       AREAV = Area of Voronoi region K unless IER > 0, */
09179 /*               in which case AREAV = 0. */
09180 
09181 /*       IER = Error indicator: */
09182 /*             IER = 0 if no errors were encountered. */
09183 /*             IER = 1 if K or N is outside its valid range */
09184 /*                     on input. */
09185 /*             IER = 2 if K indexes a boundary node. */
09186 /*             IER = 3 if an error flag is returned by CIRCUM */
09187 /*                     (null triangle). */
09188 
09189 /* Modules required by AREAV:  ANGLE, CIRCUM */
09190 
09191 /* Intrinsic functions called by AREAV:  ACOS, DBLE */
09192 
09193 /* *********************************************************** */
09194 
09195 
09196 /* Test for invalid input. */
09197 
09198     /* Parameter adjustments */
09199     --lend;
09200     --z__;
09201     --y;
09202     --x;
09203     --list;
09204     --lptr;
09205 
09206     /* Function Body */
09207     if (*k < 1 || *k > *n || *n <= 3) {
09208         goto L11;
09209     }
09210 
09211 /* Initialization:  Set N3 to the last neighbor of N1 = K. */
09212 /*   The number of neighbors and the sum of interior angles */
09213 /*   are accumulated in M and ASUM, respectively. */
09214 
09215     n1 = *k;
09216     v1[0] = x[n1];
09217     v1[1] = y[n1];
09218     v1[2] = z__[n1];
09219     lpl = lend[n1];
09220     n3 = list[lpl];
09221     if (n3 < 0) {
09222         goto L12;
09223     }
09224     lp = lpl;
09225     m = 0;
09226     asum = 0.;
09227 
09228 /* Loop on triangles (N1,N2,N3) containing N1 = K. */
09229 
09230 L1:
09231     ++m;
09232     n2 = n3;
09233     lp = lptr[lp];
09234     n3 = list[lp];
09235     v2[0] = x[n2];
09236     v2[1] = y[n2];
09237     v2[2] = z__[n2];
09238     v3[0] = x[n3];
09239     v3[1] = y[n3];
09240     v3[2] = z__[n3];
09241     if (m == 1) {
09242 
09243 /* First triangle:  compute the circumcenter C2 and save a */
09244 /*   copy in C1S. */
09245 
09246         circum_(v1, v2, v3, c2, &ierr);
09247         if (ierr != 0) {
09248             goto L13;
09249         }
09250         c1s[0] = c2[0];
09251         c1s[1] = c2[1];
09252         c1s[2] = c2[2];
09253     } else if (m == 2) {
09254 
09255 /* Second triangle:  compute the circumcenter C3 and save a */
09256 /*   copy in C2S. */
09257 
09258         circum_(v1, v2, v3, c3, &ierr);
09259         if (ierr != 0) {
09260             goto L13;
09261         }
09262         c2s[0] = c3[0];
09263         c2s[1] = c3[1];
09264         c2s[2] = c3[2];
09265     } else {
09266 
09267 /* Set C1 to C2, set C2 to C3, compute the new circumcenter */
09268 /*   C3, and compute the interior angle at C2 from the */
09269 /*   sequence of vertices (C1,C2,C3). */
09270 
09271         c1[0] = c2[0];
09272         c1[1] = c2[1];
09273         c1[2] = c2[2];
09274         c2[0] = c3[0];
09275         c2[1] = c3[1];
09276         c2[2] = c3[2];
09277         circum_(v1, v2, v3, c3, &ierr);
09278         if (ierr != 0) {
09279             goto L13;
09280         }
09281         asum += angle_(c1, c2, c3);
09282     }
09283 
09284 /* Bottom on loop on neighbors of K. */
09285 
09286     if (lp != lpl) {
09287         goto L1;
09288     }
09289 
09290 /* C3 is the last vertex.  Compute its interior angle from */
09291 /*   the sequence (C2,C3,C1S). */
09292 
09293     asum += angle_(c2, c3, c1s);
09294 
09295 /* Compute the interior angle at C1S from */
09296 /*   the sequence (C3,C1S,C2S). */
09297 
09298     asum += angle_(c3, c1s, c2s);
09299 
09300 /* No error encountered. */
09301 
09302     *ier = 0;
09303     ret_val = asum - (double) (m - 2) * acos(-1.);
09304     return ret_val;
09305 
09306 /* Invalid input. */
09307 
09308 L11:
09309     *ier = 1;
09310     areav = 0.f;
09311     return ret_val;
09312 
09313 /* K indexes a boundary node. */
09314 
09315 L12:
09316     *ier = 2;
09317     areav = 0.f;
09318     return ret_val;
09319 
09320 /* Error in CIRCUM. */
09321 
09322 L13:
09323     *ier = 3;
09324     areav = 0.f;
09325     return ret_val;
09326 } /* areav_new__ */

int bdyadd_ ( int *  kk,
int *  i1,
int *  i2,
int *  list,
int *  lptr,
int *  lend,
int *  lnew 
)

Definition at line 9328 of file util_sparx.cpp.

References insert_().

Referenced by addnod_().

09330 {
09331     static int k, n1, n2, lp, lsav, nsav, next;
09332     /* Subroutine */ int insert_(int *, int *, int *,
09333             int *, int *);
09334 
09335 
09336 /* *********************************************************** */
09337 
09338 /*                                              From STRIPACK */
09339 /*                                            Robert J. Renka */
09340 /*                                  Dept. of Computer Science */
09341 /*                                       Univ. of North Texas */
09342 /*                                           renka@cs.unt.edu */
09343 /*                                                   07/11/96 */
09344 
09345 /*   This subroutine adds a boundary node to a triangulation */
09346 /* of a set of KK-1 points on the unit sphere.  The data */
09347 /* structure is updated with the insertion of node KK, but no */
09348 /* optimization is performed. */
09349 
09350 /*   This routine is identical to the similarly named routine */
09351 /* in TRIPACK. */
09352 
09353 
09354 /* On input: */
09355 
09356 /*       KK = Index of a node to be connected to the sequence */
09357 /*            of all visible boundary nodes.  KK .GE. 1 and */
09358 /*            KK must not be equal to I1 or I2. */
09359 
09360 /*       I1 = First (rightmost as viewed from KK) boundary */
09361 /*            node in the triangulation that is visible from */
09362 /*            node KK (the line segment KK-I1 intersects no */
09363 /*            arcs. */
09364 
09365 /*       I2 = Last (leftmost) boundary node that is visible */
09366 /*            from node KK.  I1 and I2 may be determined by */
09367 /*            Subroutine TRFIND. */
09368 
09369 /* The above parameters are not altered by this routine. */
09370 
09371 /*       LIST,LPTR,LEND,LNEW = Triangulation data structure */
09372 /*                             created by Subroutine TRMESH. */
09373 /*                             Nodes I1 and I2 must be in- */
09374 /*                             cluded in the triangulation. */
09375 
09376 /* On output: */
09377 
09378 /*       LIST,LPTR,LEND,LNEW = Data structure updated with */
09379 /*                             the addition of node KK.  Node */
09380 /*                             KK is connected to I1, I2, and */
09381 /*                             all boundary nodes in between. */
09382 
09383 /* Module required by BDYADD:  INSERT */
09384 
09385 /* *********************************************************** */
09386 
09387 
09388 /* Local parameters: */
09389 
09390 /* K =     Local copy of KK */
09391 /* LP =    LIST pointer */
09392 /* LSAV =  LIST pointer */
09393 /* N1,N2 = Local copies of I1 and I2, respectively */
09394 /* NEXT =  Boundary node visible from K */
09395 /* NSAV =  Boundary node visible from K */
09396 
09397     /* Parameter adjustments */
09398     --lend;
09399     --lptr;
09400     --list;
09401 
09402     /* Function Body */
09403     k = *kk;
09404     n1 = *i1;
09405     n2 = *i2;
09406 
09407 /* Add K as the last neighbor of N1. */
09408 
09409     lp = lend[n1];
09410     lsav = lptr[lp];
09411     lptr[lp] = *lnew;
09412     list[*lnew] = -k;
09413     lptr[*lnew] = lsav;
09414     lend[n1] = *lnew;
09415     ++(*lnew);
09416     next = -list[lp];
09417     list[lp] = next;
09418     nsav = next;
09419 
09420 /* Loop on the remaining boundary nodes between N1 and N2, */
09421 /*   adding K as the first neighbor. */
09422 
09423 L1:
09424     lp = lend[next];
09425     insert_(&k, &lp, &list[1], &lptr[1], lnew);
09426     if (next == n2) {
09427         goto L2;
09428     }
09429     next = -list[lp];
09430     list[lp] = next;
09431     goto L1;
09432 
09433 /* Add the boundary nodes between N1 and N2 as neighbors */
09434 /*   of node K. */
09435 
09436 L2:
09437     lsav = *lnew;
09438     list[*lnew] = n1;
09439     lptr[*lnew] = *lnew + 1;
09440     ++(*lnew);
09441     next = nsav;
09442 
09443 L3:
09444     if (next == n2) {
09445         goto L4;
09446     }
09447     list[*lnew] = next;
09448     lptr[*lnew] = *lnew + 1;
09449     ++(*lnew);
09450     lp = lend[next];
09451     next = list[lp];
09452     goto L3;
09453 
09454 L4:
09455     list[*lnew] = -n2;
09456     lptr[*lnew] = lsav;
09457     lend[k] = *lnew;
09458     ++(*lnew);
09459     return 0;
09460 } /* bdyadd_ */

int bnodes_ ( int *  n,
int *  list,
int *  lptr,
int *  lend,
int *  nodes,
int *  nb,
int *  na,
int *  nt 
)

Definition at line 9462 of file util_sparx.cpp.

References nn().

09464 {
09465     /* System generated locals */
09466     int i__1;
09467 
09468     /* Local variables */
09469     static int k, n0, lp, nn, nst;
09470 
09471 
09472 /* *********************************************************** */
09473 
09474 /*                                              From STRIPACK */
09475 /*                                            Robert J. Renka */
09476 /*                                  Dept. of Computer Science */
09477 /*                                       Univ. of North Texas */
09478 /*                                           renka@cs.unt.edu */
09479 /*                                                   06/26/96 */
09480 
09481 /*   Given a triangulation of N nodes on the unit sphere */
09482 /* created by Subroutine TRMESH, this subroutine returns an */
09483 /* array containing the indexes (if any) of the counterclock- */
09484 /* wise-ordered sequence of boundary nodes -- the nodes on */
09485 /* the boundary of the convex hull of the set of nodes.  (The */
09486 /* boundary is empty if the nodes do not lie in a single */
09487 /* hemisphere.)  The numbers of boundary nodes, arcs, and */
09488 /* triangles are also returned. */
09489 
09490 
09491 /* On input: */
09492 
09493 /*       N = Number of nodes in the triangulation.  N .GE. 3. */
09494 
09495 /*       LIST,LPTR,LEND = Data structure defining the trian- */
09496 /*                        gulation.  Refer to Subroutine */
09497 /*                        TRMESH. */
09498 
09499 /* The above parameters are not altered by this routine. */
09500 
09501 /*       NODES = int array of length at least NB */
09502 /*               (NB .LE. N). */
09503 
09504 /* On output: */
09505 
09506 /*       NODES = Ordered sequence of boundary node indexes */
09507 /*               in the range 1 to N (in the first NB loca- */
09508 /*               tions). */
09509 
09510 /*       NB = Number of boundary nodes. */
09511 
09512 /*       NA,NT = Number of arcs and triangles, respectively, */
09513 /*               in the triangulation. */
09514 
09515 /* Modules required by BNODES:  None */
09516 
09517 /* *********************************************************** */
09518 
09519 
09520 /* Local parameters: */
09521 
09522 /* K =   NODES index */
09523 /* LP =  LIST pointer */
09524 /* N0 =  Boundary node to be added to NODES */
09525 /* NN =  Local copy of N */
09526 /* NST = First element of nodes (arbitrarily chosen to be */
09527 /*         the one with smallest index) */
09528 
09529     /* Parameter adjustments */
09530     --lend;
09531     --list;
09532     --lptr;
09533     --nodes;
09534 
09535     /* Function Body */
09536     nn = *n;
09537 
09538 /* Search for a boundary node. */
09539 
09540     i__1 = nn;
09541     for (nst = 1; nst <= i__1; ++nst) {
09542         lp = lend[nst];
09543         if (list[lp] < 0) {
09544             goto L2;
09545         }
09546 /* L1: */
09547     }
09548 
09549 /* The triangulation contains no boundary nodes. */
09550 
09551     *nb = 0;
09552     *na = (nn - 2) * 3;
09553     *nt = nn - (2<<1);
09554     return 0;
09555 
09556 /* NST is the first boundary node encountered.  Initialize */
09557 /*   for traversal of the boundary. */
09558 
09559 L2:
09560     nodes[1] = nst;
09561     k = 1;
09562     n0 = nst;
09563 
09564 /* Traverse the boundary in counterclockwise order. */
09565 
09566 L3:
09567     lp = lend[n0];
09568     lp = lptr[lp];
09569     n0 = list[lp];
09570     if (n0 == nst) {
09571         goto L4;
09572     }
09573     ++k;
09574     nodes[k] = n0;
09575     goto L3;
09576 
09577 /* Store the counts. */
09578 
09579 L4:
09580     *nb = k;
09581     *nt = (*n << 1) - *nb - 2;
09582     *na = *nt + *n - 1;
09583     return 0;
09584 } /* bnodes_ */

int circle_ ( int *  k,
double *  xc,
double *  yc,
int *  ier 
)

Definition at line 9586 of file util_sparx.cpp.

09588 {
09589     /* System generated locals */
09590     int i__1;
09591 
09592     /* Builtin functions */
09593     //double atan(double), cos(double), sin(double);
09594 
09595     /* Local variables */
09596     static double a, c__;
09597     static int i__;
09598     static double s;
09599     static int k2, k3;
09600     static double x0, y0;
09601     static int kk, np1;
09602 
09603 
09604 /* *********************************************************** */
09605 
09606 /*                                              From STRIPACK */
09607 /*                                            Robert J. Renka */
09608 /*                                  Dept. of Computer Science */
09609 /*                                       Univ. of North Texas */
09610 /*                                           renka@cs.unt.edu */
09611 /*                                                   04/06/90 */
09612 
09613 /*   This subroutine computes the coordinates of a sequence */
09614 /* of N equally spaced points on the unit circle centered at */
09615 /* (0,0).  An N-sided polygonal approximation to the circle */
09616 /* may be plotted by connecting (XC(I),YC(I)) to (XC(I+1), */
09617 /* YC(I+1)) for I = 1,...,N, where XC(N+1) = XC(1) and */
09618 /* YC(N+1) = YC(1).  A reasonable value for N in this case */
09619 /* is 2*PI*R, where R is the radius of the circle in device */
09620 /* coordinates. */
09621 
09622 
09623 /* On input: */
09624 
09625 /*       K = Number of points in each quadrant, defining N as */
09626 /*           4K.  K .GE. 1. */
09627 
09628 /*       XC,YC = Arrays of length at least N+1 = 4K+1. */
09629 
09630 /* K is not altered by this routine. */
09631 
09632 /* On output: */
09633 
09634 /*       XC,YC = Cartesian coordinates of the points on the */
09635 /*               unit circle in the first N+1 locations. */
09636 /*               XC(I) = cos(A*(I-1)), YC(I) = sin(A*(I-1)), */
09637 /*               where A = 2*PI/N.  Note that XC(N+1) = XC(1) */
09638 /*               and YC(N+1) = YC(1). */
09639 
09640 /*       IER = Error indicator: */
09641 /*             IER = 0 if no errors were encountered. */
09642 /*             IER = 1 if K < 1 on input. */
09643 
09644 /* Modules required by CIRCLE:  None */
09645 
09646 /* Intrinsic functions called by CIRCLE:  ATAN, COS, DBLE, */
09647 /*                                          SIN */
09648 
09649 /* *********************************************************** */
09650 
09651 
09652 /* Local parameters: */
09653 
09654 /* I =     DO-loop index and index for XC and YC */
09655 /* KK =    Local copy of K */
09656 /* K2 =    K*2 */
09657 /* K3 =    K*3 */
09658 /* NP1 =   N+1 = 4*K + 1 */
09659 /* A =     Angular separation between adjacent points */
09660 /* C,S =   Cos(A) and sin(A), respectively, defining a */
09661 /*           rotation through angle A */
09662 /* X0,Y0 = Cartesian coordinates of a point on the unit */
09663 /*           circle in the first quadrant */
09664 
09665     /* Parameter adjustments */
09666     --yc;
09667     --xc;
09668 
09669     /* Function Body */
09670     kk = *k;
09671     k2 = kk << 1;
09672     k3 = kk * 3;
09673     np1 = (kk << 2) + 1;
09674 
09675 /* Test for invalid input, compute A, C, and S, and */
09676 /*   initialize (X0,Y0) to (1,0). */
09677 
09678     if (kk < 1) {
09679         goto L2;
09680     }
09681     a = atan(1.) * 2. / (double) kk;
09682     c__ = cos(a);
09683     s = sin(a);
09684     x0 = 1.;
09685     y0 = 0.;
09686 
09687 /* Loop on points (X0,Y0) in the first quadrant, storing */
09688 /*   the point and its reflections about the x axis, the */
09689 /*   y axis, and the line y = -x. */
09690 
09691     i__1 = kk;
09692     for (i__ = 1; i__ <= i__1; ++i__) {
09693         xc[i__] = x0;
09694         yc[i__] = y0;
09695         xc[i__ + kk] = -y0;
09696         yc[i__ + kk] = x0;
09697         xc[i__ + k2] = -x0;
09698         yc[i__ + k2] = -y0;
09699         xc[i__ + k3] = y0;
09700         yc[i__ + k3] = -x0;
09701 
09702 /*   Rotate (X0,Y0) counterclockwise through angle A. */
09703 
09704         x0 = c__ * x0 - s * y0;
09705         y0 = s * x0 + c__ * y0;
09706 /* L1: */
09707     }
09708 
09709 /* Store the coordinates of the first point as the last */
09710 /*   point. */
09711 
09712     xc[np1] = xc[1];
09713     yc[np1] = yc[1];
09714     *ier = 0;
09715     return 0;
09716 
09717 /* K < 1. */
09718 
09719 L2:
09720     *ier = 1;
09721     return 0;
09722 } /* circle_ */

int circum_ ( double *  ,
double *  ,
double *  ,
double *  ,
int *   
)

Definition at line 9724 of file util_sparx.cpp.

References sqrt().

Referenced by EMAN::Util::areav_(), areav_new__(), and crlist_().

09726 {
09727     /* Builtin functions */
09728     //double sqrt(double);
09729 
09730     /* Local variables */
09731     static int i__;
09732     static double e1[3], e2[3], cu[3], cnorm;
09733 
09734 
09735 /* *********************************************************** */
09736 
09737 /*                                              From STRIPACK */
09738 /*                                            Robert J. Renka */
09739 /*                                  Dept. of Computer Science */
09740 /*                                       Univ. of North Texas */
09741 /*                                           renka@cs.unt.edu */
09742 /*                                                   10/27/02 */
09743 
09744 /*   This subroutine returns the circumcenter of a spherical */
09745 /* triangle on the unit sphere:  the point on the sphere sur- */
09746 /* face that is equally distant from the three triangle */
09747 /* vertices and lies in the same hemisphere, where distance */
09748 /* is taken to be arc-length on the sphere surface. */
09749 
09750 
09751 /* On input: */
09752 
09753 /*       V1,V2,V3 = Arrays of length 3 containing the Carte- */
09754 /*                  sian coordinates of the three triangle */
09755 /*                  vertices (unit vectors) in CCW order. */
09756 
09757 /* The above parameters are not altered by this routine. */
09758 
09759 /*       C = Array of length 3. */
09760 
09761 /* On output: */
09762 
09763 /*       C = Cartesian coordinates of the circumcenter unless */
09764 /*           IER > 0, in which case C is not defined.  C = */
09765 /*           (V2-V1) X (V3-V1) normalized to a unit vector. */
09766 
09767 /*       IER = Error indicator: */
09768 /*             IER = 0 if no errors were encountered. */
09769 /*             IER = 1 if V1, V2, and V3 lie on a common */
09770 /*                     line:  (V2-V1) X (V3-V1) = 0. */
09771 /*             (The vertices are not tested for validity.) */
09772 
09773 /* Modules required by CIRCUM:  None */
09774 
09775 /* Intrinsic function called by CIRCUM:  SQRT */
09776 
09777 /* *********************************************************** */
09778 
09779 
09780 /* Local parameters: */
09781 
09782 /* CNORM = Norm of CU:  used to compute C */
09783 /* CU =    Scalar multiple of C:  E1 X E2 */
09784 /* E1,E2 = Edges of the underlying planar triangle: */
09785 /*           V2-V1 and V3-V1, respectively */
09786 /* I =     DO-loop index */
09787 
09788     /* Parameter adjustments */
09789     --c__;
09790     --v3;
09791     --v2;
09792     --v1;
09793 
09794     /* Function Body */
09795     for (i__ = 1; i__ <= 3; ++i__) {
09796         e1[i__ - 1] = v2[i__] - v1[i__];
09797         e2[i__ - 1] = v3[i__] - v1[i__];
09798 /* L1: */
09799     }
09800 
09801 /* Compute CU = E1 X E2 and CNORM**2. */
09802 
09803     cu[0] = e1[1] * e2[2] - e1[2] * e2[1];
09804     cu[1] = e1[2] * e2[0] - e1[0] * e2[2];
09805     cu[2] = e1[0] * e2[1] - e1[1] * e2[0];
09806     cnorm = cu[0] * cu[0] + cu[1] * cu[1] + cu[2] * cu[2];
09807 
09808 /* The vertices lie on a common line if and only if CU is */
09809 /*   the zero vector. */
09810 
09811     if (cnorm != 0.) {
09812 
09813 /*   No error:  compute C. */
09814 
09815         cnorm = sqrt(cnorm);
09816         for (i__ = 1; i__ <= 3; ++i__) {
09817             c__[i__] = cu[i__ - 1] / cnorm;
09818 /* L2: */
09819         }
09820 
09821 /* If the vertices are nearly identical, the problem is */
09822 /*   ill-conditioned and it is possible for the computed */
09823 /*   value of C to be 180 degrees off:  <C,V1> near -1 */
09824 /*   when it should be positive. */
09825 
09826         if (c__[1] * v1[1] + c__[2] * v1[2] + c__[3] * v1[3] < -.5) {
09827             c__[1] = -c__[1];
09828             c__[2] = -c__[2];
09829             c__[3] = -c__[3];
09830         }
09831         *ier = 0;
09832     } else {
09833 
09834 /*   CU = 0. */
09835 
09836         *ier = 1;
09837     }
09838     return 0;
09839 } /* circum_ */

int covsph_ ( int *  kk,
int *  n0,
int *  list,
int *  lptr,
int *  lend,
int *  lnew 
)

Definition at line 9841 of file util_sparx.cpp.

References insert_().

Referenced by addnod_().

09843 {
09844     static int k, lp, nst, lsav, next;
09845     /* Subroutine */ int insert_(int *, int *, int *,
09846             int *, int *);
09847 
09848 
09849 /* *********************************************************** */
09850 
09851 /*                                              From STRIPACK */
09852 /*                                            Robert J. Renka */
09853 /*                                  Dept. of Computer Science */
09854 /*                                       Univ. of North Texas */
09855 /*                                           renka@cs.unt.edu */
09856 /*                                                   07/17/96 */
09857 
09858 /*   This subroutine connects an exterior node KK to all */
09859 /* boundary nodes of a triangulation of KK-1 points on the */
09860 /* unit sphere, producing a triangulation that covers the */
09861 /* sphere.  The data structure is updated with the addition */
09862 /* of node KK, but no optimization is performed.  All boun- */
09863 /* dary nodes must be visible from node KK. */
09864 
09865 
09866 /* On input: */
09867 
09868 /*       KK = Index of the node to be connected to the set of */
09869 /*            all boundary nodes.  KK .GE. 4. */
09870 
09871 /*       N0 = Index of a boundary node (in the range 1 to */
09872 /*            KK-1).  N0 may be determined by Subroutine */
09873 /*            TRFIND. */
09874 
09875 /* The above parameters are not altered by this routine. */
09876 
09877 /*       LIST,LPTR,LEND,LNEW = Triangulation data structure */
09878 /*                             created by Subroutine TRMESH. */
09879 /*                             Node N0 must be included in */
09880 /*                             the triangulation. */
09881 
09882 /* On output: */
09883 
09884 /*       LIST,LPTR,LEND,LNEW = Data structure updated with */
09885 /*                             the addition of node KK as the */
09886 /*                             last entry.  The updated */
09887 /*                             triangulation contains no */
09888 /*                             boundary nodes. */
09889 
09890 /* Module required by COVSPH:  INSERT */
09891 
09892 /* *********************************************************** */
09893 
09894 
09895 /* Local parameters: */
09896 
09897 /* K =     Local copy of KK */
09898 /* LP =    LIST pointer */
09899 /* LSAV =  LIST pointer */
09900 /* NEXT =  Boundary node visible from K */
09901 /* NST =   Local copy of N0 */
09902 
09903     /* Parameter adjustments */
09904     --lend;
09905     --lptr;
09906     --list;
09907 
09908     /* Function Body */
09909     k = *kk;
09910     nst = *n0;
09911 
09912 /* Traverse the boundary in clockwise order, inserting K as */
09913 /*   the first neighbor of each boundary node, and converting */
09914 /*   the boundary node to an interior node. */
09915 
09916     next = nst;
09917 L1:
09918     lp = lend[next];
09919     insert_(&k, &lp, &list[1], &lptr[1], lnew);
09920     next = -list[lp];
09921     list[lp] = next;
09922     if (next != nst) {
09923         goto L1;
09924     }
09925 
09926 /* Traverse the boundary again, adding each node to K's */
09927 /*   adjacency list. */
09928 
09929     lsav = *lnew;
09930 L2:
09931     lp = lend[next];
09932     list[*lnew] = next;
09933     lptr[*lnew] = *lnew + 1;
09934     ++(*lnew);
09935     next = list[lp];
09936     if (next != nst) {
09937         goto L2;
09938     }
09939 
09940     lptr[*lnew - 1] = lsav;
09941     lend[k] = *lnew - 1;
09942     return 0;
09943 } /* covsph_ */

int crlist_ ( int *  n,
int *  ncol,
double *  x,
double *  y,
double *  z__,
int *  list,
int *  lend,
int *  lptr,
int *  lnew,
int *  ltri,
int *  listc,
int *  nb,
double *  xc,
double *  yc,
double *  zc,
double *  rc,
int *  ier 
)

Definition at line 9946 of file util_sparx.cpp.

References abs, circum_(), FALSE_, ierr, lstptr_(), nn(), swptst_(), t, and TRUE_.

09951 {
09952     /* System generated locals */
09953     int i__1, i__2;
09954 
09955     /* Builtin functions */
09956     //double acos(double);
09957 
09958     /* Local variables */
09959     static double c__[3], t;
09960     static int i1, i2, i3, i4, n0, n1, n2, n3, n4;
09961     static double v1[3], v2[3], v3[3];
09962     static int lp, kt, nn, nt, nm2, kt1, kt2, kt11, kt12, kt21, kt22, lpl,
09963              lpn;
09964     static long int swp;
09965     static int ierr;
09966     int lstptr_(int *, int *, int *, int *);
09967     long int swptst_(int *, int *, int *, int *,
09968             double *, double *, double *);
09969 
09970 
09971 /* *********************************************************** */
09972 
09973 /*                                              From STRIPACK */
09974 /*                                            Robert J. Renka */
09975 /*                                  Dept. of Computer Science */
09976 /*                                       Univ. of North Texas */
09977 /*                                           renka@cs.unt.edu */
09978 /*                                                   03/05/03 */
09979 
09980 /*   Given a Delaunay triangulation of nodes on the surface */
09981 /* of the unit sphere, this subroutine returns the set of */
09982 /* triangle circumcenters corresponding to Voronoi vertices, */
09983 /* along with the circumradii and a list of triangle indexes */
09984 /* LISTC stored in one-to-one correspondence with LIST/LPTR */
09985 /* entries. */
09986 
09987 /*   A triangle circumcenter is the point (unit vector) lying */
09988 /* at the same angular distance from the three vertices and */
09989 /* contained in the same hemisphere as the vertices.  (Note */
09990 /* that the negative of a circumcenter is also equidistant */
09991 /* from the vertices.)  If the triangulation covers the sur- */
09992 /* face, the Voronoi vertices are the circumcenters of the */
09993 /* triangles in the Delaunay triangulation.  LPTR, LEND, and */
09994 /* LNEW are not altered in this case. */
09995 
09996 /*   On the other hand, if the nodes are contained in a sin- */
09997 /* gle hemisphere, the triangulation is implicitly extended */
09998 /* to the entire surface by adding pseudo-arcs (of length */
09999 /* greater than 180 degrees) between boundary nodes forming */
10000 /* pseudo-triangles whose 'circumcenters' are included in the */
10001 /* list.  This extension to the triangulation actually con- */
10002 /* sists of a triangulation of the set of boundary nodes in */
10003 /* which the swap test is reversed (a non-empty circumcircle */
10004 /* test).  The negative circumcenters are stored as the */
10005 /* pseudo-triangle 'circumcenters'.  LISTC, LPTR, LEND, and */
10006 /* LNEW contain a data structure corresponding to the ex- */
10007 /* tended triangulation (Voronoi diagram), but LIST is not */
10008 /* altered in this case.  Thus, if it is necessary to retain */
10009 /* the original (unextended) triangulation data structure, */
10010 /* copies of LPTR and LNEW must be saved before calling this */
10011 /* routine. */
10012 
10013 
10014 /* On input: */
10015 
10016 /*       N = Number of nodes in the triangulation.  N .GE. 3. */
10017 /*           Note that, if N = 3, there are only two Voronoi */
10018 /*           vertices separated by 180 degrees, and the */
10019 /*           Voronoi regions are not well defined. */
10020 
10021 /*       NCOL = Number of columns reserved for LTRI.  This */
10022 /*              must be at least NB-2, where NB is the number */
10023 /*              of boundary nodes. */
10024 
10025 /*       X,Y,Z = Arrays of length N containing the Cartesian */
10026 /*               coordinates of the nodes (unit vectors). */
10027 
10028 /*       LIST = int array containing the set of adjacency */
10029 /*              lists.  Refer to Subroutine TRMESH. */
10030 
10031 /*       LEND = Set of pointers to ends of adjacency lists. */
10032 /*              Refer to Subroutine TRMESH. */
10033 
10034 /* The above parameters are not altered by this routine. */
10035 
10036 /*       LPTR = Array of pointers associated with LIST.  Re- */
10037 /*              fer to Subroutine TRMESH. */
10038 
10039 /*       LNEW = Pointer to the first empty location in LIST */
10040 /*              and LPTR (list length plus one). */
10041 
10042 /*       LTRI = int work space array dimensioned 6 by */
10043 /*              NCOL, or unused dummy parameter if NB = 0. */
10044 
10045 /*       LISTC = int array of length at least 3*NT, where */
10046 /*               NT = 2*N-4 is the number of triangles in the */
10047 /*               triangulation (after extending it to cover */
10048 /*               the entire surface if necessary). */
10049 
10050 /*       XC,YC,ZC,RC = Arrays of length NT = 2*N-4. */
10051 
10052 /* On output: */
10053 
10054 /*       LPTR = Array of pointers associated with LISTC: */
10055 /*              updated for the addition of pseudo-triangles */
10056 /*              if the original triangulation contains */
10057 /*              boundary nodes (NB > 0). */
10058 
10059 /*       LNEW = Pointer to the first empty location in LISTC */
10060 /*              and LPTR (list length plus one).  LNEW is not */
10061 /*              altered if NB = 0. */
10062 
10063 /*       LTRI = Triangle list whose first NB-2 columns con- */
10064 /*              tain the indexes of a clockwise-ordered */
10065 /*              sequence of vertices (first three rows) */
10066 /*              followed by the LTRI column indexes of the */
10067 /*              triangles opposite the vertices (or 0 */
10068 /*              denoting the exterior region) in the last */
10069 /*              three rows.  This array is not generally of */
10070 /*              any use. */
10071 
10072 /*       LISTC = Array containing triangle indexes (indexes */
10073 /*               to XC, YC, ZC, and RC) stored in 1-1 corres- */
10074 /*               pondence with LIST/LPTR entries (or entries */
10075 /*               that would be stored in LIST for the */
10076 /*               extended triangulation):  the index of tri- */
10077 /*               angle (N1,N2,N3) is stored in LISTC(K), */
10078 /*               LISTC(L), and LISTC(M), where LIST(K), */
10079 /*               LIST(L), and LIST(M) are the indexes of N2 */
10080 /*               as a neighbor of N1, N3 as a neighbor of N2, */
10081 /*               and N1 as a neighbor of N3.  The Voronoi */
10082 /*               region associated with a node is defined by */
10083 /*               the CCW-ordered sequence of circumcenters in */
10084 /*               one-to-one correspondence with its adjacency */
10085 /*               list (in the extended triangulation). */
10086 
10087 /*       NB = Number of boundary nodes unless IER = 1. */
10088 
10089 /*       XC,YC,ZC = Arrays containing the Cartesian coordi- */
10090 /*                  nates of the triangle circumcenters */
10091 /*                  (Voronoi vertices).  XC(I)**2 + YC(I)**2 */
10092 /*                  + ZC(I)**2 = 1.  The first NB-2 entries */
10093 /*                  correspond to pseudo-triangles if NB > 0. */
10094 
10095 /*       RC = Array containing circumradii (the arc lengths */
10096 /*            or angles between the circumcenters and associ- */
10097 /*            ated triangle vertices) in 1-1 correspondence */
10098 /*            with circumcenters. */
10099 
10100 /*       IER = Error indicator: */
10101 /*             IER = 0 if no errors were encountered. */
10102 /*             IER = 1 if N < 3. */
10103 /*             IER = 2 if NCOL < NB-2. */
10104 /*             IER = 3 if a triangle is degenerate (has ver- */
10105 /*                     tices lying on a common geodesic). */
10106 
10107 /* Modules required by CRLIST:  CIRCUM, LSTPTR, SWPTST */
10108 
10109 /* Intrinsic functions called by CRLIST:  ABS, ACOS */
10110 
10111 /* *********************************************************** */
10112 
10113 
10114 /* Local parameters: */
10115 
10116 /* C =         Circumcenter returned by Subroutine CIRCUM */
10117 /* I1,I2,I3 =  Permutation of (1,2,3):  LTRI row indexes */
10118 /* I4 =        LTRI row index in the range 1 to 3 */
10119 /* IERR =      Error flag for calls to CIRCUM */
10120 /* KT =        Triangle index */
10121 /* KT1,KT2 =   Indexes of a pair of adjacent pseudo-triangles */
10122 /* KT11,KT12 = Indexes of the pseudo-triangles opposite N1 */
10123 /*               and N2 as vertices of KT1 */
10124 /* KT21,KT22 = Indexes of the pseudo-triangles opposite N1 */
10125 /*               and N2 as vertices of KT2 */
10126 /* LP,LPN =    LIST pointers */
10127 /* LPL =       LIST pointer of the last neighbor of N1 */
10128 /* N0 =        Index of the first boundary node (initial */
10129 /*               value of N1) in the loop on boundary nodes */
10130 /*               used to store the pseudo-triangle indexes */
10131 /*               in LISTC */
10132 /* N1,N2,N3 =  Nodal indexes defining a triangle (CCW order) */
10133 /*               or pseudo-triangle (clockwise order) */
10134 /* N4 =        Index of the node opposite N2 -> N1 */
10135 /* NM2 =       N-2 */
10136 /* NN =        Local copy of N */
10137 /* NT =        Number of pseudo-triangles:  NB-2 */
10138 /* SWP =       long int variable set to TRUE in each optimiza- */
10139 /*               tion loop (loop on pseudo-arcs) iff a swap */
10140 /*               is performed */
10141 /* V1,V2,V3 =  Vertices of triangle KT = (N1,N2,N3) sent to */
10142 /*               Subroutine CIRCUM */
10143 
10144     /* Parameter adjustments */
10145     --lend;
10146     --z__;
10147     --y;
10148     --x;
10149     ltri -= 7;
10150     --list;
10151     --lptr;
10152     --listc;
10153     --xc;
10154     --yc;
10155     --zc;
10156     --rc;
10157 
10158     /* Function Body */
10159     nn = *n;
10160     *nb = 0;
10161     nt = 0;
10162     if (nn < 3) {
10163         goto L21;
10164     }
10165 
10166 /* Search for a boundary node N1. */
10167 
10168     i__1 = nn;
10169     for (n1 = 1; n1 <= i__1; ++n1) {
10170         lp = lend[n1];
10171         if (list[lp] < 0) {
10172             goto L2;
10173         }
10174 /* L1: */
10175     }
10176 
10177 /* The triangulation already covers the sphere. */
10178 
10179     goto L9;
10180 
10181 /* There are NB .GE. 3 boundary nodes.  Add NB-2 pseudo- */
10182 /*   triangles (N1,N2,N3) by connecting N3 to the NB-3 */
10183 /*   boundary nodes to which it is not already adjacent. */
10184 
10185 /*   Set N3 and N2 to the first and last neighbors, */
10186 /*     respectively, of N1. */
10187 
10188 L2:
10189     n2 = -list[lp];
10190     lp = lptr[lp];
10191     n3 = list[lp];
10192 
10193 /*   Loop on boundary arcs N1 -> N2 in clockwise order, */
10194 /*     storing triangles (N1,N2,N3) in column NT of LTRI */
10195 /*     along with the indexes of the triangles opposite */
10196 /*     the vertices. */
10197 
10198 L3:
10199     ++nt;
10200     if (nt <= *ncol) {
10201         ltri[nt * 6 + 1] = n1;
10202         ltri[nt * 6 + 2] = n2;
10203         ltri[nt * 6 + 3] = n3;
10204         ltri[nt * 6 + 4] = nt + 1;
10205         ltri[nt * 6 + 5] = nt - 1;
10206         ltri[nt * 6 + 6] = 0;
10207     }
10208     n1 = n2;
10209     lp = lend[n1];
10210     n2 = -list[lp];
10211     if (n2 != n3) {
10212         goto L3;
10213     }
10214 
10215     *nb = nt + 2;
10216     if (*ncol < nt) {
10217         goto L22;
10218     }
10219     ltri[nt * 6 + 4] = 0;
10220     if (nt == 1) {
10221         goto L7;
10222     }
10223 
10224 /* Optimize the exterior triangulation (set of pseudo- */
10225 /*   triangles) by applying swaps to the pseudo-arcs N1-N2 */
10226 /*   (pairs of adjacent pseudo-triangles KT1 and KT2 > KT1). */
10227 /*   The loop on pseudo-arcs is repeated until no swaps are */
10228 /*   performed. */
10229 
10230 L4:
10231     swp = FALSE_;
10232     i__1 = nt - 1;
10233     for (kt1 = 1; kt1 <= i__1; ++kt1) {
10234         for (i3 = 1; i3 <= 3; ++i3) {
10235             kt2 = ltri[i3 + 3 + kt1 * 6];
10236             if (kt2 <= kt1) {
10237                 goto L5;
10238             }
10239 
10240 /*   The LTRI row indexes (I1,I2,I3) of triangle KT1 = */
10241 /*     (N1,N2,N3) are a cyclical permutation of (1,2,3). */
10242 
10243             if (i3 == 1) {
10244                 i1 = 2;
10245                 i2 = 3;
10246             } else if (i3 == 2) {
10247                 i1 = 3;
10248                 i2 = 1;
10249             } else {
10250                 i1 = 1;
10251                 i2 = 2;
10252             }
10253             n1 = ltri[i1 + kt1 * 6];
10254             n2 = ltri[i2 + kt1 * 6];
10255             n3 = ltri[i3 + kt1 * 6];
10256 
10257 /*   KT2 = (N2,N1,N4) for N4 = LTRI(I,KT2), where */
10258 /*     LTRI(I+3,KT2) = KT1. */
10259 
10260             if (ltri[kt2 * 6 + 4] == kt1) {
10261                 i4 = 1;
10262             } else if (ltri[kt2 * 6 + 5] == kt1) {
10263                 i4 = 2;
10264             } else {
10265                 i4 = 3;
10266             }
10267             n4 = ltri[i4 + kt2 * 6];
10268 
10269 /*   The empty circumcircle test is reversed for the pseudo- */
10270 /*     triangles.  The reversal is implicit in the clockwise */
10271 /*     ordering of the vertices. */
10272 
10273             if (! swptst_(&n1, &n2, &n3, &n4, &x[1], &y[1], &z__[1])) {
10274                 goto L5;
10275             }
10276 
10277 /*   Swap arc N1-N2 for N3-N4.  KTij is the triangle opposite */
10278 /*     Nj as a vertex of KTi. */
10279 
10280             swp = TRUE_;
10281             kt11 = ltri[i1 + 3 + kt1 * 6];
10282             kt12 = ltri[i2 + 3 + kt1 * 6];
10283             if (i4 == 1) {
10284                 i2 = 2;
10285                 i1 = 3;
10286             } else if (i4 == 2) {
10287                 i2 = 3;
10288                 i1 = 1;
10289             } else {
10290                 i2 = 1;
10291                 i1 = 2;
10292             }
10293             kt21 = ltri[i1 + 3 + kt2 * 6];
10294             kt22 = ltri[i2 + 3 + kt2 * 6];
10295             ltri[kt1 * 6 + 1] = n4;
10296             ltri[kt1 * 6 + 2] = n3;
10297             ltri[kt1 * 6 + 3] = n1;
10298             ltri[kt1 * 6 + 4] = kt12;
10299             ltri[kt1 * 6 + 5] = kt22;
10300             ltri[kt1 * 6 + 6] = kt2;
10301             ltri[kt2 * 6 + 1] = n3;
10302             ltri[kt2 * 6 + 2] = n4;
10303             ltri[kt2 * 6 + 3] = n2;
10304             ltri[kt2 * 6 + 4] = kt21;
10305             ltri[kt2 * 6 + 5] = kt11;
10306             ltri[kt2 * 6 + 6] = kt1;
10307 
10308 /*   Correct the KT11 and KT22 entries that changed. */
10309 
10310             if (kt11 != 0) {
10311                 i4 = 4;
10312                 if (ltri[kt11 * 6 + 4] != kt1) {
10313                     i4 = 5;
10314                     if (ltri[kt11 * 6 + 5] != kt1) {
10315                         i4 = 6;
10316                     }
10317                 }
10318                 ltri[i4 + kt11 * 6] = kt2;
10319             }
10320             if (kt22 != 0) {
10321                 i4 = 4;
10322                 if (ltri[kt22 * 6 + 4] != kt2) {
10323                     i4 = 5;
10324                     if (ltri[kt22 * 6 + 5] != kt2) {
10325                         i4 = 6;
10326                     }
10327                 }
10328                 ltri[i4 + kt22 * 6] = kt1;
10329             }
10330 L5:
10331             ;
10332         }
10333 /* L6: */
10334     }
10335     if (swp) {
10336         goto L4;
10337     }
10338 
10339 /* Compute and store the negative circumcenters and radii of */
10340 /*   the pseudo-triangles in the first NT positions. */
10341 
10342 L7:
10343     i__1 = nt;
10344     for (kt = 1; kt <= i__1; ++kt) {
10345         n1 = ltri[kt * 6 + 1];
10346         n2 = ltri[kt * 6 + 2];
10347         n3 = ltri[kt * 6 + 3];
10348         v1[0] = x[n1];
10349         v1[1] = y[n1];
10350         v1[2] = z__[n1];
10351         v2[0] = x[n2];
10352         v2[1] = y[n2];
10353         v2[2] = z__[n2];
10354         v3[0] = x[n3];
10355         v3[1] = y[n3];
10356         v3[2] = z__[n3];
10357         circum_(v2, v1, v3, c__, &ierr);
10358         if (ierr != 0) {
10359             goto L23;
10360         }
10361 
10362 /*   Store the negative circumcenter and radius (computed */
10363 /*     from <V1,C>). */
10364 
10365         xc[kt] = -c__[0];
10366         yc[kt] = -c__[1];
10367         zc[kt] = -c__[2];
10368         t = -(v1[0] * c__[0] + v1[1] * c__[1] + v1[2] * c__[2]);
10369         if (t < -1.) {
10370             t = -1.;
10371         }
10372         if (t > 1.) {
10373             t = 1.;
10374         }
10375         rc[kt] = acos(t);
10376 /* L8: */
10377     }
10378 
10379 /* Compute and store the circumcenters and radii of the */
10380 /*   actual triangles in positions KT = NT+1, NT+2, ... */
10381 /*   Also, store the triangle indexes KT in the appropriate */
10382 /*   LISTC positions. */
10383 
10384 L9:
10385     kt = nt;
10386 
10387 /*   Loop on nodes N1. */
10388 
10389     nm2 = nn - 2;
10390     i__1 = nm2;
10391     for (n1 = 1; n1 <= i__1; ++n1) {
10392         lpl = lend[n1];
10393         lp = lpl;
10394         n3 = list[lp];
10395 
10396 /*   Loop on adjacent neighbors N2,N3 of N1 for which N2 > N1 */
10397 /*     and N3 > N1. */
10398 
10399 L10:
10400         lp = lptr[lp];
10401         n2 = n3;
10402         n3 = (i__2 = list[lp], abs(i__2));
10403         if (n2 <= n1 || n3 <= n1) {
10404             goto L11;
10405         }
10406         ++kt;
10407 
10408 /*   Compute the circumcenter C of triangle KT = (N1,N2,N3). */
10409 
10410         v1[0] = x[n1];
10411         v1[1] = y[n1];
10412         v1[2] = z__[n1];
10413         v2[0] = x[n2];
10414         v2[1] = y[n2];
10415         v2[2] = z__[n2];
10416         v3[0] = x[n3];
10417         v3[1] = y[n3];
10418         v3[2] = z__[n3];
10419         circum_(v1, v2, v3, c__, &ierr);
10420         if (ierr != 0) {
10421             goto L23;
10422         }
10423 
10424 /*   Store the circumcenter, radius and triangle index. */
10425 
10426         xc[kt] = c__[0];
10427         yc[kt] = c__[1];
10428         zc[kt] = c__[2];
10429         t = v1[0] * c__[0] + v1[1] * c__[1] + v1[2] * c__[2];
10430         if (t < -1.) {
10431             t = -1.;
10432         }
10433         if (t > 1.) {
10434             t = 1.;
10435         }
10436         rc[kt] = acos(t);
10437 
10438 /*   Store KT in LISTC(LPN), where Abs(LIST(LPN)) is the */
10439 /*     index of N2 as a neighbor of N1, N3 as a neighbor */
10440 /*     of N2, and N1 as a neighbor of N3. */
10441 
10442         lpn = lstptr_(&lpl, &n2, &list[1], &lptr[1]);
10443         listc[lpn] = kt;
10444         lpn = lstptr_(&lend[n2], &n3, &list[1], &lptr[1]);
10445         listc[lpn] = kt;
10446         lpn = lstptr_(&lend[n3], &n1, &list[1], &lptr[1]);
10447         listc[lpn] = kt;
10448 L11:
10449         if (lp != lpl) {
10450             goto L10;
10451         }
10452 /* L12: */
10453     }
10454     if (nt == 0) {
10455         goto L20;
10456     }
10457 
10458 /* Store the first NT triangle indexes in LISTC. */
10459 
10460 /*   Find a boundary triangle KT1 = (N1,N2,N3) with a */
10461 /*     boundary arc opposite N3. */
10462 
10463     kt1 = 0;
10464 L13:
10465     ++kt1;
10466     if (ltri[kt1 * 6 + 4] == 0) {
10467         i1 = 2;
10468         i2 = 3;
10469         i3 = 1;
10470         goto L14;
10471     } else if (ltri[kt1 * 6 + 5] == 0) {
10472         i1 = 3;
10473         i2 = 1;
10474         i3 = 2;
10475         goto L14;
10476     } else if (ltri[kt1 * 6 + 6] == 0) {
10477         i1 = 1;
10478         i2 = 2;
10479         i3 = 3;
10480         goto L14;
10481     }
10482     goto L13;
10483 L14:
10484     n1 = ltri[i1 + kt1 * 6];
10485     n0 = n1;
10486 
10487 /*   Loop on boundary nodes N1 in CCW order, storing the */
10488 /*     indexes of the clockwise-ordered sequence of triangles */
10489 /*     that contain N1.  The first triangle overwrites the */
10490 /*     last neighbor position, and the remaining triangles, */
10491 /*     if any, are appended to N1's adjacency list. */
10492 
10493 /*   A pointer to the first neighbor of N1 is saved in LPN. */
10494 
10495 L15:
10496     lp = lend[n1];
10497     lpn = lptr[lp];
10498     listc[lp] = kt1;
10499 
10500 /*   Loop on triangles KT2 containing N1. */
10501 
10502 L16:
10503     kt2 = ltri[i2 + 3 + kt1 * 6];
10504     if (kt2 != 0) {
10505 
10506 /*   Append KT2 to N1's triangle list. */
10507 
10508         lptr[lp] = *lnew;
10509         lp = *lnew;
10510         listc[lp] = kt2;
10511         ++(*lnew);
10512 
10513 /*   Set KT1 to KT2 and update (I1,I2,I3) such that */
10514 /*     LTRI(I1,KT1) = N1. */
10515 
10516         kt1 = kt2;
10517         if (ltri[kt1 * 6 + 1] == n1) {
10518             i1 = 1;
10519             i2 = 2;
10520             i3 = 3;
10521         } else if (ltri[kt1 * 6 + 2] == n1) {
10522             i1 = 2;
10523             i2 = 3;
10524             i3 = 1;
10525         } else {
10526             i1 = 3;
10527             i2 = 1;
10528             i3 = 2;
10529         }
10530         goto L16;
10531     }
10532 
10533 /*   Store the saved first-triangle pointer in LPTR(LP), set */
10534 /*     N1 to the next boundary node, test for termination, */
10535 /*     and permute the indexes:  the last triangle containing */
10536 /*     a boundary node is the first triangle containing the */
10537 /*     next boundary node. */
10538 
10539     lptr[lp] = lpn;
10540     n1 = ltri[i3 + kt1 * 6];
10541     if (n1 != n0) {
10542         i4 = i3;
10543         i3 = i2;
10544         i2 = i1;
10545         i1 = i4;
10546         goto L15;
10547     }
10548 
10549 /* No errors encountered. */
10550 
10551 L20:
10552     *ier = 0;
10553     return 0;
10554 
10555 /* N < 3. */
10556 
10557 L21:
10558     *ier = 1;
10559     return 0;
10560 
10561 /* Insufficient space reserved for LTRI. */
10562 
10563 L22:
10564     *ier = 2;
10565     return 0;
10566 
10567 /* Error flag returned by CIRCUM: KT indexes a null triangle. */
10568 
10569 L23:
10570     *ier = 3;
10571     return 0;
10572 } /* crlist_ */

int delarc_ ( int *  n,
int *  io1,
int *  io2,
int *  list,
int *  lptr,
int *  lend,
int *  lnew,
int *  ier 
)

Definition at line 10574 of file util_sparx.cpp.

References abs, delnb_(), and lstptr_().

10576 {
10577     /* System generated locals */
10578     int i__1;
10579 
10580     /* Local variables */
10581     static int n1, n2, n3, lp, lph, lpl;
10582     /* Subroutine */ int delnb_(int *, int *, int *,
10583             int *, int *, int *, int *, int *);
10584     int lstptr_(int *, int *, int *, int *);
10585 
10586 
10587 /* *********************************************************** */
10588 
10589 /*                                              From STRIPACK */
10590 /*                                            Robert J. Renka */
10591 /*                                  Dept. of Computer Science */
10592 /*                                       Univ. of North Texas */
10593 /*                                           renka@cs.unt.edu */
10594 /*                                                   07/17/96 */
10595 
10596 /*   This subroutine deletes a boundary arc from a triangula- */
10597 /* tion.  It may be used to remove a null triangle from the */
10598 /* convex hull boundary.  Note, however, that if the union of */
10599 /* triangles is rendered nonconvex, Subroutines DELNOD, EDGE, */
10600 /* and TRFIND (and hence ADDNOD) may fail.  Also, Function */
10601 /* NEARND should not be called following an arc deletion. */
10602 
10603 /*   This routine is identical to the similarly named routine */
10604 /* in TRIPACK. */
10605 
10606 
10607 /* On input: */
10608 
10609 /*       N = Number of nodes in the triangulation.  N .GE. 4. */
10610 
10611 /*       IO1,IO2 = Indexes (in the range 1 to N) of a pair of */
10612 /*                 adjacent boundary nodes defining the arc */
10613 /*                 to be removed. */
10614 
10615 /* The above parameters are not altered by this routine. */
10616 
10617 /*       LIST,LPTR,LEND,LNEW = Triangulation data structure */
10618 /*                             created by Subroutine TRMESH. */
10619 
10620 /* On output: */
10621 
10622 /*       LIST,LPTR,LEND,LNEW = Data structure updated with */
10623 /*                             the removal of arc IO1-IO2 */
10624 /*                             unless IER > 0. */
10625 
10626 /*       IER = Error indicator: */
10627 /*             IER = 0 if no errors were encountered. */
10628 /*             IER = 1 if N, IO1, or IO2 is outside its valid */
10629 /*                     range, or IO1 = IO2. */
10630 /*             IER = 2 if IO1-IO2 is not a boundary arc. */
10631 /*             IER = 3 if the node opposite IO1-IO2 is al- */
10632 /*                     ready a boundary node, and thus IO1 */
10633 /*                     or IO2 has only two neighbors or a */
10634 /*                     deletion would result in two triangu- */
10635 /*                     lations sharing a single node. */
10636 /*             IER = 4 if one of the nodes is a neighbor of */
10637 /*                     the other, but not vice versa, imply- */
10638 /*                     ing an invalid triangulation data */
10639 /*                     structure. */
10640 
10641 /* Module required by DELARC:  DELNB, LSTPTR */
10642 
10643 /* Intrinsic function called by DELARC:  ABS */
10644 
10645 /* *********************************************************** */
10646 
10647 
10648 /* Local parameters: */
10649 
10650 /* LP =       LIST pointer */
10651 /* LPH =      LIST pointer or flag returned by DELNB */
10652 /* LPL =      Pointer to the last neighbor of N1, N2, or N3 */
10653 /* N1,N2,N3 = Nodal indexes of a triangle such that N1->N2 */
10654 /*              is the directed boundary edge associated */
10655 /*              with IO1-IO2 */
10656 
10657     /* Parameter adjustments */
10658     --lend;
10659     --list;
10660     --lptr;
10661 
10662     /* Function Body */
10663     n1 = *io1;
10664     n2 = *io2;
10665 
10666 /* Test for errors, and set N1->N2 to the directed boundary */
10667 /*   edge associated with IO1-IO2:  (N1,N2,N3) is a triangle */
10668 /*   for some N3. */
10669 
10670     if (*n < 4 || n1 < 1 || n1 > *n || n2 < 1 || n2 > *n || n1 == n2) {
10671         *ier = 1;
10672         return 0;
10673     }
10674 
10675     lpl = lend[n2];
10676     if (-list[lpl] != n1) {
10677         n1 = n2;
10678         n2 = *io1;
10679         lpl = lend[n2];
10680         if (-list[lpl] != n1) {
10681             *ier = 2;
10682             return 0;
10683         }
10684     }
10685 
10686 /* Set N3 to the node opposite N1->N2 (the second neighbor */
10687 /*   of N1), and test for error 3 (N3 already a boundary */
10688 /*   node). */
10689 
10690     lpl = lend[n1];
10691     lp = lptr[lpl];
10692     lp = lptr[lp];
10693     n3 = (i__1 = list[lp], abs(i__1));
10694     lpl = lend[n3];
10695     if (list[lpl] <= 0) {
10696         *ier = 3;
10697         return 0;
10698     }
10699 
10700 /* Delete N2 as a neighbor of N1, making N3 the first */
10701 /*   neighbor, and test for error 4 (N2 not a neighbor */
10702 /*   of N1).  Note that previously computed pointers may */
10703 /*   no longer be valid following the call to DELNB. */
10704 
10705     delnb_(&n1, &n2, n, &list[1], &lptr[1], &lend[1], lnew, &lph);
10706     if (lph < 0) {
10707         *ier = 4;
10708         return 0;
10709     }
10710 
10711 /* Delete N1 as a neighbor of N2, making N3 the new last */
10712 /*   neighbor. */
10713 
10714     delnb_(&n2, &n1, n, &list[1], &lptr[1], &lend[1], lnew, &lph);
10715 
10716 /* Make N3 a boundary node with first neighbor N2 and last */
10717 /*   neighbor N1. */
10718 
10719     lp = lstptr_(&lend[n3], &n1, &list[1], &lptr[1]);
10720     lend[n3] = lp;
10721     list[lp] = -n1;
10722 
10723 /* No errors encountered. */
10724 
10725     *ier = 0;
10726     return 0;
10727 } /* delarc_ */

int delnb_ ( int *  n0,
int *  nb,
int *  n,
int *  list,
int *  lptr,
int *  lend,
int *  lnew,
int *  lph 
)

Definition at line 10729 of file util_sparx.cpp.

References abs, and nn().

Referenced by delarc_(), and delnod_().

10731 {
10732     /* System generated locals */
10733     int i__1;
10734 
10735     /* Local variables */
10736     static int i__, lp, nn, lpb, lpl, lpp, lnw;
10737 
10738 
10739 /* *********************************************************** */
10740 
10741 /*                                              From STRIPACK */
10742 /*                                            Robert J. Renka */
10743 /*                                  Dept. of Computer Science */
10744 /*                                       Univ. of North Texas */
10745 /*                                           renka@cs.unt.edu */
10746 /*                                                   07/29/98 */
10747 
10748 /*   This subroutine deletes a neighbor NB from the adjacency */
10749 /* list of node N0 (but N0 is not deleted from the adjacency */
10750 /* list of NB) and, if NB is a boundary node, makes N0 a */
10751 /* boundary node.  For pointer (LIST index) LPH to NB as a */
10752 /* neighbor of N0, the empty LIST,LPTR location LPH is filled */
10753 /* in with the values at LNEW-1, pointer LNEW-1 (in LPTR and */
10754 /* possibly in LEND) is changed to LPH, and LNEW is decremen- */
10755 /* ted.  This requires a search of LEND and LPTR entailing an */
10756 /* expected operation count of O(N). */
10757 
10758 /*   This routine is identical to the similarly named routine */
10759 /* in TRIPACK. */
10760 
10761 
10762 /* On input: */
10763 
10764 /*       N0,NB = Indexes, in the range 1 to N, of a pair of */
10765 /*               nodes such that NB is a neighbor of N0. */
10766 /*               (N0 need not be a neighbor of NB.) */
10767 
10768 /*       N = Number of nodes in the triangulation.  N .GE. 3. */
10769 
10770 /* The above parameters are not altered by this routine. */
10771 
10772 /*       LIST,LPTR,LEND,LNEW = Data structure defining the */
10773 /*                             triangulation. */
10774 
10775 /* On output: */
10776 
10777 /*       LIST,LPTR,LEND,LNEW = Data structure updated with */
10778 /*                             the removal of NB from the ad- */
10779 /*                             jacency list of N0 unless */
10780 /*                             LPH < 0. */
10781 
10782 /*       LPH = List pointer to the hole (NB as a neighbor of */
10783 /*             N0) filled in by the values at LNEW-1 or error */
10784 /*             indicator: */
10785 /*             LPH > 0 if no errors were encountered. */
10786 /*             LPH = -1 if N0, NB, or N is outside its valid */
10787 /*                      range. */
10788 /*             LPH = -2 if NB is not a neighbor of N0. */
10789 
10790 /* Modules required by DELNB:  None */
10791 
10792 /* Intrinsic function called by DELNB:  ABS */
10793 
10794 /* *********************************************************** */
10795 
10796 
10797 /* Local parameters: */
10798 
10799 /* I =   DO-loop index */
10800 /* LNW = LNEW-1 (output value of LNEW) */
10801 /* LP =  LIST pointer of the last neighbor of NB */
10802 /* LPB = Pointer to NB as a neighbor of N0 */
10803 /* LPL = Pointer to the last neighbor of N0 */
10804 /* LPP = Pointer to the neighbor of N0 that precedes NB */
10805 /* NN =  Local copy of N */
10806 
10807     /* Parameter adjustments */
10808     --lend;
10809     --list;
10810     --lptr;
10811 
10812     /* Function Body */
10813     nn = *n;
10814 
10815 /* Test for error 1. */
10816 
10817     if (*n0 < 1 || *n0 > nn || *nb < 1 || *nb > nn || nn < 3) {
10818         *lph = -1;
10819         return 0;
10820     }
10821 
10822 /*   Find pointers to neighbors of N0: */
10823 
10824 /*     LPL points to the last neighbor, */
10825 /*     LPP points to the neighbor NP preceding NB, and */
10826 /*     LPB points to NB. */
10827 
10828     lpl = lend[*n0];
10829     lpp = lpl;
10830     lpb = lptr[lpp];
10831 L1:
10832     if (list[lpb] == *nb) {
10833         goto L2;
10834     }
10835     lpp = lpb;
10836     lpb = lptr[lpp];
10837     if (lpb != lpl) {
10838         goto L1;
10839     }
10840 
10841 /*   Test for error 2 (NB not found). */
10842 
10843     if ((i__1 = list[lpb], abs(i__1)) != *nb) {
10844         *lph = -2;
10845         return 0;
10846     }
10847 
10848 /*   NB is the last neighbor of N0.  Make NP the new last */
10849 /*     neighbor and, if NB is a boundary node, then make N0 */
10850 /*     a boundary node. */
10851 
10852     lend[*n0] = lpp;
10853     lp = lend[*nb];
10854     if (list[lp] < 0) {
10855         list[lpp] = -list[lpp];
10856     }
10857     goto L3;
10858 
10859 /*   NB is not the last neighbor of N0.  If NB is a boundary */
10860 /*     node and N0 is not, then make N0 a boundary node with */
10861 /*     last neighbor NP. */
10862 
10863 L2:
10864     lp = lend[*nb];
10865     if (list[lp] < 0 && list[lpl] > 0) {
10866         lend[*n0] = lpp;
10867         list[lpp] = -list[lpp];
10868     }
10869 
10870 /*   Update LPTR so that the neighbor following NB now fol- */
10871 /*     lows NP, and fill in the hole at location LPB. */
10872 
10873 L3:
10874     lptr[lpp] = lptr[lpb];
10875     lnw = *lnew - 1;
10876     list[lpb] = list[lnw];
10877     lptr[lpb] = lptr[lnw];
10878     for (i__ = nn; i__ >= 1; --i__) {
10879         if (lend[i__] == lnw) {
10880             lend[i__] = lpb;
10881             goto L5;
10882         }
10883 /* L4: */
10884     }
10885 
10886 L5:
10887     i__1 = lnw - 1;
10888     for (i__ = 1; i__ <= i__1; ++i__) {
10889         if (lptr[i__] == lnw) {
10890             lptr[i__] = lpb;
10891         }
10892 /* L6: */
10893     }
10894 
10895 /* No errors encountered. */
10896 
10897     *lnew = lnw;
10898     *lph = lpb;
10899     return 0;
10900 } /* delnb_ */

int delnod_ ( int *  k,
int *  n,
double *  x,
double *  y,
double *  z__,
int *  list,
int *  lptr,
int *  lend,
int *  lnew,
int *  lwk,
int *  iwk,
int *  ier 
)

Definition at line 10902 of file util_sparx.cpp.

References abs, delnb_(), FALSE_, ierr, left_(), lstptr_(), nbcnt_(), nn(), optim_(), swap_(), and TRUE_.

10905 {
10906     /* System generated locals */
10907     int i__1;
10908 
10909     /* Local variables */
10910     static int i__, j, n1, n2;
10911     static double x1, x2, y1, y2, z1, z2;
10912     static int nl, lp, nn, nr;
10913     static double xl, yl, zl, xr, yr, zr;
10914     static int nnb, lp21, lpf, lph, lpl, lpn, iwl, nit, lnw, lpl2;
10915     static long int bdry;
10916     static int ierr, lwkl;
10917     /* Subroutine */ int swap_(int *, int *, int *,
10918             int *, int *, int *, int *, int *), delnb_(
10919             int *, int *, int *, int *, int *, int *,
10920             int *, int *);
10921     int nbcnt_(int *, int *);
10922     /* Subroutine */ int optim_(double *, double *, double
10923             *, int *, int *, int *, int *, int *, int
10924             *, int *);
10925     static int nfrst;
10926     int lstptr_(int *, int *, int *, int *);
10927 
10928 
10929 /* *********************************************************** */
10930 
10931 /*                                              From STRIPACK */
10932 /*                                            Robert J. Renka */
10933 /*                                  Dept. of Computer Science */
10934 /*                                       Univ. of North Texas */
10935 /*                                           renka@cs.unt.edu */
10936 /*                                                   11/30/99 */
10937 
10938 /*   This subroutine deletes node K (along with all arcs */
10939 /* incident on node K) from a triangulation of N nodes on the */
10940 /* unit sphere, and inserts arcs as necessary to produce a */
10941 /* triangulation of the remaining N-1 nodes.  If a Delaunay */
10942 /* triangulation is input, a Delaunay triangulation will */
10943 /* result, and thus, DELNOD reverses the effect of a call to */
10944 /* Subroutine ADDNOD. */
10945 
10946 
10947 /* On input: */
10948 
10949 /*       K = Index (for X, Y, and Z) of the node to be */
10950 /*           deleted.  1 .LE. K .LE. N. */
10951 
10952 /* K is not altered by this routine. */
10953 
10954 /*       N = Number of nodes in the triangulation on input. */
10955 /*           N .GE. 4.  Note that N will be decremented */
10956 /*           following the deletion. */
10957 
10958 /*       X,Y,Z = Arrays of length N containing the Cartesian */
10959 /*               coordinates of the nodes in the triangula- */
10960 /*               tion. */
10961 
10962 /*       LIST,LPTR,LEND,LNEW = Data structure defining the */
10963 /*                             triangulation.  Refer to Sub- */
10964 /*                             routine TRMESH. */
10965 
10966 /*       LWK = Number of columns reserved for IWK.  LWK must */
10967 /*             be at least NNB-3, where NNB is the number of */
10968 /*             neighbors of node K, including an extra */
10969 /*             pseudo-node if K is a boundary node. */
10970 
10971 /*       IWK = int work array dimensioned 2 by LWK (or */
10972 /*             array of length .GE. 2*LWK). */
10973 
10974 /* On output: */
10975 
10976 /*       N = Number of nodes in the triangulation on output. */
10977 /*           The input value is decremented unless 1 .LE. IER */
10978 /*           .LE. 4. */
10979 
10980 /*       X,Y,Z = Updated arrays containing nodal coordinates */
10981 /*               (with elements K+1,...,N+1 shifted up one */
10982 /*               position, thus overwriting element K) unless */
10983 /*               1 .LE. IER .LE. 4. */
10984 
10985 /*       LIST,LPTR,LEND,LNEW = Updated triangulation data */
10986 /*                             structure reflecting the dele- */
10987 /*                             tion unless 1 .LE. IER .LE. 4. */
10988 /*                             Note that the data structure */
10989 /*                             may have been altered if IER > */
10990 /*                             3. */
10991 
10992 /*       LWK = Number of IWK columns required unless IER = 1 */
10993 /*             or IER = 3. */
10994 
10995 /*       IWK = Indexes of the endpoints of the new arcs added */
10996 /*             unless LWK = 0 or 1 .LE. IER .LE. 4.  (Arcs */
10997 /*             are associated with columns, or pairs of */
10998 /*             adjacent elements if IWK is declared as a */
10999 /*             singly-subscripted array.) */
11000 
11001 /*       IER = Error indicator: */
11002 /*             IER = 0 if no errors were encountered. */
11003 /*             IER = 1 if K or N is outside its valid range */
11004 /*                     or LWK < 0 on input. */
11005 /*             IER = 2 if more space is required in IWK. */
11006 /*                     Refer to LWK. */
11007 /*             IER = 3 if the triangulation data structure is */
11008 /*                     invalid on input. */
11009 /*             IER = 4 if K indexes an interior node with */
11010 /*                     four or more neighbors, none of which */
11011 /*                     can be swapped out due to collineari- */
11012 /*                     ty, and K cannot therefore be deleted. */
11013 /*             IER = 5 if an error flag (other than IER = 1) */
11014 /*                     was returned by OPTIM.  An error */
11015 /*                     message is written to the standard */
11016 /*                     output unit in this case. */
11017 /*             IER = 6 if error flag 1 was returned by OPTIM. */
11018 /*                     This is not necessarily an error, but */
11019 /*                     the arcs may not be optimal. */
11020 
11021 /*   Note that the deletion may result in all remaining nodes */
11022 /* being collinear.  This situation is not flagged. */
11023 
11024 /* Modules required by DELNOD:  DELNB, LEFT, LSTPTR, NBCNT, */
11025 /*                                OPTIM, SWAP, SWPTST */
11026 
11027 /* Intrinsic function called by DELNOD:  ABS */
11028 
11029 /* *********************************************************** */
11030 
11031 
11032 /* Local parameters: */
11033 
11034 /* BDRY =    long int variable with value TRUE iff N1 is a */
11035 /*             boundary node */
11036 /* I,J =     DO-loop indexes */
11037 /* IERR =    Error flag returned by OPTIM */
11038 /* IWL =     Number of IWK columns containing arcs */
11039 /* LNW =     Local copy of LNEW */
11040 /* LP =      LIST pointer */
11041 /* LP21 =    LIST pointer returned by SWAP */
11042 /* LPF,LPL = Pointers to the first and last neighbors of N1 */
11043 /* LPH =     Pointer (or flag) returned by DELNB */
11044 /* LPL2 =    Pointer to the last neighbor of N2 */
11045 /* LPN =     Pointer to a neighbor of N1 */
11046 /* LWKL =    Input value of LWK */
11047 /* N1 =      Local copy of K */
11048 /* N2 =      Neighbor of N1 */
11049 /* NFRST =   First neighbor of N1:  LIST(LPF) */
11050 /* NIT =     Number of iterations in OPTIM */
11051 /* NR,NL =   Neighbors of N1 preceding (to the right of) and */
11052 /*             following (to the left of) N2, respectively */
11053 /* NN =      Number of nodes in the triangulation */
11054 /* NNB =     Number of neighbors of N1 (including a pseudo- */
11055 /*             node representing the boundary if N1 is a */
11056 /*             boundary node) */
11057 /* X1,Y1,Z1 = Coordinates of N1 */
11058 /* X2,Y2,Z2 = Coordinates of N2 */
11059 /* XL,YL,ZL = Coordinates of NL */
11060 /* XR,YR,ZR = Coordinates of NR */
11061 
11062 
11063 /* Set N1 to K and NNB to the number of neighbors of N1 (plus */
11064 /*   one if N1 is a boundary node), and test for errors.  LPF */
11065 /*   and LPL are LIST indexes of the first and last neighbors */
11066 /*   of N1, IWL is the number of IWK columns containing arcs, */
11067 /*   and BDRY is TRUE iff N1 is a boundary node. */
11068 
11069     /* Parameter adjustments */
11070     iwk -= 3;
11071     --lend;
11072     --lptr;
11073     --list;
11074     --z__;
11075     --y;
11076     --x;
11077 
11078     /* Function Body */
11079     n1 = *k;
11080     nn = *n;
11081     if (n1 < 1 || n1 > nn || nn < 4 || *lwk < 0) {
11082         goto L21;
11083     }
11084     lpl = lend[n1];
11085     lpf = lptr[lpl];
11086     nnb = nbcnt_(&lpl, &lptr[1]);
11087     bdry = list[lpl] < 0;
11088     if (bdry) {
11089         ++nnb;
11090     }
11091     if (nnb < 3) {
11092         goto L23;
11093     }
11094     lwkl = *lwk;
11095     *lwk = nnb - 3;
11096     if (lwkl < *lwk) {
11097         goto L22;
11098     }
11099     iwl = 0;
11100     if (nnb == 3) {
11101         goto L3;
11102     }
11103 
11104 /* Initialize for loop on arcs N1-N2 for neighbors N2 of N1, */
11105 /*   beginning with the second neighbor.  NR and NL are the */
11106 /*   neighbors preceding and following N2, respectively, and */
11107 /*   LP indexes NL.  The loop is exited when all possible */
11108 /*   swaps have been applied to arcs incident on N1. */
11109 
11110     x1 = x[n1];
11111     y1 = y[n1];
11112     z1 = z__[n1];
11113     nfrst = list[lpf];
11114     nr = nfrst;
11115     xr = x[nr];
11116     yr = y[nr];
11117     zr = z__[nr];
11118     lp = lptr[lpf];
11119     n2 = list[lp];
11120     x2 = x[n2];
11121     y2 = y[n2];
11122     z2 = z__[n2];
11123     lp = lptr[lp];
11124 
11125 /* Top of loop:  set NL to the neighbor following N2. */
11126 
11127 L1:
11128     nl = (i__1 = list[lp], abs(i__1));
11129     if (nl == nfrst && bdry) {
11130         goto L3;
11131     }
11132     xl = x[nl];
11133     yl = y[nl];
11134     zl = z__[nl];
11135 
11136 /*   Test for a convex quadrilateral.  To avoid an incorrect */
11137 /*     test caused by collinearity, use the fact that if N1 */
11138 /*     is a boundary node, then N1 LEFT NR->NL and if N2 is */
11139 /*     a boundary node, then N2 LEFT NL->NR. */
11140 
11141     lpl2 = lend[n2];
11142     if (! ((bdry || left_(&xr, &yr, &zr, &xl, &yl, &zl, &x1, &y1, &z1)) && (
11143             list[lpl2] < 0 || left_(&xl, &yl, &zl, &xr, &yr, &zr, &x2, &y2, &
11144             z2)))) {
11145 
11146 /*   Nonconvex quadrilateral -- no swap is possible. */
11147 
11148         nr = n2;
11149         xr = x2;
11150         yr = y2;
11151         zr = z2;
11152         goto L2;
11153     }
11154 
11155 /*   The quadrilateral defined by adjacent triangles */
11156 /*     (N1,N2,NL) and (N2,N1,NR) is convex.  Swap in */
11157 /*     NL-NR and store it in IWK unless NL and NR are */
11158 /*     already adjacent, in which case the swap is not */
11159 /*     possible.  Indexes larger than N1 must be decremented */
11160 /*     since N1 will be deleted from X, Y, and Z. */
11161 
11162     swap_(&nl, &nr, &n1, &n2, &list[1], &lptr[1], &lend[1], &lp21);
11163     if (lp21 == 0) {
11164         nr = n2;
11165         xr = x2;
11166         yr = y2;
11167         zr = z2;
11168         goto L2;
11169     }
11170     ++iwl;
11171     if (nl <= n1) {
11172         iwk[(iwl << 1) + 1] = nl;
11173     } else {
11174         iwk[(iwl << 1) + 1] = nl - 1;
11175     }
11176     if (nr <= n1) {
11177         iwk[(iwl << 1) + 2] = nr;
11178     } else {
11179         iwk[(iwl << 1) + 2] = nr - 1;
11180     }
11181 
11182 /*   Recompute the LIST indexes and NFRST, and decrement NNB. */
11183 
11184     lpl = lend[n1];
11185     --nnb;
11186     if (nnb == 3) {
11187         goto L3;
11188     }
11189     lpf = lptr[lpl];
11190     nfrst = list[lpf];
11191     lp = lstptr_(&lpl, &nl, &list[1], &lptr[1]);
11192     if (nr == nfrst) {
11193         goto L2;
11194     }
11195 
11196 /*   NR is not the first neighbor of N1. */
11197 /*     Back up and test N1-NR for a swap again:  Set N2 to */
11198 /*     NR and NR to the previous neighbor of N1 -- the */
11199 /*     neighbor of NR which follows N1.  LP21 points to NL */
11200 /*     as a neighbor of NR. */
11201 
11202     n2 = nr;
11203     x2 = xr;
11204     y2 = yr;
11205     z2 = zr;
11206     lp21 = lptr[lp21];
11207     lp21 = lptr[lp21];
11208     nr = (i__1 = list[lp21], abs(i__1));
11209     xr = x[nr];
11210     yr = y[nr];
11211     zr = z__[nr];
11212     goto L1;
11213 
11214 /*   Bottom of loop -- test for termination of loop. */
11215 
11216 L2:
11217     if (n2 == nfrst) {
11218         goto L3;
11219     }
11220     n2 = nl;
11221     x2 = xl;
11222     y2 = yl;
11223     z2 = zl;
11224     lp = lptr[lp];
11225     goto L1;
11226 
11227 /* Delete N1 and all its incident arcs.  If N1 is an interior */
11228 /*   node and either NNB > 3 or NNB = 3 and N2 LEFT NR->NL, */
11229 /*   then N1 must be separated from its neighbors by a plane */
11230 /*   containing the origin -- its removal reverses the effect */
11231 /*   of a call to COVSPH, and all its neighbors become */
11232 /*   boundary nodes.  This is achieved by treating it as if */
11233 /*   it were a boundary node (setting BDRY to TRUE, changing */
11234 /*   a sign in LIST, and incrementing NNB). */
11235 
11236 L3:
11237     if (! bdry) {
11238         if (nnb > 3) {
11239             bdry = TRUE_;
11240         } else {
11241             lpf = lptr[lpl];
11242             nr = list[lpf];
11243             lp = lptr[lpf];
11244             n2 = list[lp];
11245             nl = list[lpl];
11246             bdry = left_(&x[nr], &y[nr], &z__[nr], &x[nl], &y[nl], &z__[nl], &
11247                     x[n2], &y[n2], &z__[n2]);
11248         }
11249         if (bdry) {
11250 
11251 /*   IF a boundary node already exists, then N1 and its */
11252 /*     neighbors cannot be converted to boundary nodes. */
11253 /*     (They must be collinear.)  This is a problem if */
11254 /*     NNB > 3. */
11255 
11256             i__1 = nn;
11257             for (i__ = 1; i__ <= i__1; ++i__) {
11258                 if (list[lend[i__]] < 0) {
11259                     bdry = FALSE_;
11260                     goto L5;
11261                 }
11262 /* L4: */
11263             }
11264             list[lpl] = -list[lpl];
11265             ++nnb;
11266         }
11267     }
11268 L5:
11269     if (! bdry && nnb > 3) {
11270         goto L24;
11271     }
11272 
11273 /* Initialize for loop on neighbors.  LPL points to the last */
11274 /*   neighbor of N1.  LNEW is stored in local variable LNW. */
11275 
11276     lp = lpl;
11277     lnw = *lnew;
11278 
11279 /* Loop on neighbors N2 of N1, beginning with the first. */
11280 
11281 L6:
11282     lp = lptr[lp];
11283     n2 = (i__1 = list[lp], abs(i__1));
11284     delnb_(&n2, &n1, n, &list[1], &lptr[1], &lend[1], &lnw, &lph);
11285     if (lph < 0) {
11286         goto L23;
11287     }
11288 
11289 /*   LP and LPL may require alteration. */
11290 
11291     if (lpl == lnw) {
11292         lpl = lph;
11293     }
11294     if (lp == lnw) {
11295         lp = lph;
11296     }
11297     if (lp != lpl) {
11298         goto L6;
11299     }
11300 
11301 /* Delete N1 from X, Y, Z, and LEND, and remove its adjacency */
11302 /*   list from LIST and LPTR.  LIST entries (nodal indexes) */
11303 /*   which are larger than N1 must be decremented. */
11304 
11305     --nn;
11306     if (n1 > nn) {
11307         goto L9;
11308     }
11309     i__1 = nn;
11310     for (i__ = n1; i__ <= i__1; ++i__) {
11311         x[i__] = x[i__ + 1];
11312         y[i__] = y[i__ + 1];
11313         z__[i__] = z__[i__ + 1];
11314         lend[i__] = lend[i__ + 1];
11315 /* L7: */
11316     }
11317 
11318     i__1 = lnw - 1;
11319     for (i__ = 1; i__ <= i__1; ++i__) {
11320         if (list[i__] > n1) {
11321             --list[i__];
11322         }
11323         if (list[i__] < -n1) {
11324             ++list[i__];
11325         }
11326 /* L8: */
11327     }
11328 
11329 /*   For LPN = first to last neighbors of N1, delete the */
11330 /*     preceding neighbor (indexed by LP). */
11331 
11332 /*   Each empty LIST,LPTR location LP is filled in with the */
11333 /*     values at LNW-1, and LNW is decremented.  All pointers */
11334 /*     (including those in LPTR and LEND) with value LNW-1 */
11335 /*     must be changed to LP. */
11336 
11337 /*  LPL points to the last neighbor of N1. */
11338 
11339 L9:
11340     if (bdry) {
11341         --nnb;
11342     }
11343     lpn = lpl;
11344     i__1 = nnb;
11345     for (j = 1; j <= i__1; ++j) {
11346         --lnw;
11347         lp = lpn;
11348         lpn = lptr[lp];
11349         list[lp] = list[lnw];
11350         lptr[lp] = lptr[lnw];
11351         if (lptr[lpn] == lnw) {
11352             lptr[lpn] = lp;
11353         }
11354         if (lpn == lnw) {
11355             lpn = lp;
11356         }
11357         for (i__ = nn; i__ >= 1; --i__) {
11358             if (lend[i__] == lnw) {
11359                 lend[i__] = lp;
11360                 goto L11;
11361             }
11362 /* L10: */
11363         }
11364 
11365 L11:
11366         for (i__ = lnw - 1; i__ >= 1; --i__) {
11367             if (lptr[i__] == lnw) {
11368                 lptr[i__] = lp;
11369             }
11370 /* L12: */
11371         }
11372 /* L13: */
11373     }
11374 
11375 /* Update N and LNEW, and optimize the patch of triangles */
11376 /*   containing K (on input) by applying swaps to the arcs */
11377 /*   in IWK. */
11378 
11379     *n = nn;
11380     *lnew = lnw;
11381     if (iwl > 0) {
11382         nit = iwl << 2;
11383         optim_(&x[1], &y[1], &z__[1], &iwl, &list[1], &lptr[1], &lend[1], &
11384                 nit, &iwk[3], &ierr);
11385         if (ierr != 0 && ierr != 1) {
11386             goto L25;
11387         }
11388         if (ierr == 1) {
11389             goto L26;
11390         }
11391     }
11392 
11393 /* Successful termination. */
11394 
11395     *ier = 0;
11396     return 0;
11397 
11398 /* Invalid input parameter. */
11399 
11400 L21:
11401     *ier = 1;
11402     return 0;
11403 
11404 /* Insufficient space reserved for IWK. */
11405 
11406 L22:
11407     *ier = 2;
11408     return 0;
11409 
11410 /* Invalid triangulation data structure.  NNB < 3 on input or */
11411 /*   N2 is a neighbor of N1 but N1 is not a neighbor of N2. */
11412 
11413 L23:
11414     *ier = 3;
11415     return 0;
11416 
11417 /* N1 is interior but NNB could not be reduced to 3. */
11418 
11419 L24:
11420     *ier = 4;
11421     return 0;
11422 
11423 /* Error flag (other than 1) returned by OPTIM. */
11424 
11425 L25:
11426     *ier = 5;
11427 /*      WRITE (*,100) NIT, IERR */
11428 /*  100 FORMAT (//5X,'*** Error in OPTIM (called from ', */
11429 /*     .        'DELNOD):  NIT = ',I4,', IER = ',I1,' ***'/) */
11430     return 0;
11431 
11432 /* Error flag 1 returned by OPTIM. */
11433 
11434 L26:
11435     *ier = 6;
11436     return 0;
11437 } /* delnod_ */

int drwarc_ ( int *  ,
double *  p,
double *  q,
double *  tol,
int *  nseg 
)

Definition at line 11439 of file util_sparx.cpp.

References abs, and sqrt().

Referenced by trplot_(), and vrplot_().

11441 {
11442     /* System generated locals */
11443     int i__1;
11444     double d__1;
11445 
11446     /* Builtin functions */
11447     //double sqrt(double);
11448 
11449     /* Local variables */
11450     static int i__, k;
11451     static double s, p1[3], p2[3], u1, u2, v1, v2;
11452     static int na;
11453     static double dp[3], du, dv, pm[3], um, vm, err, enrm;
11454 
11455 
11456 /* *********************************************************** */
11457 
11458 /*                                              From STRIPACK */
11459 /*                                            Robert J. Renka */
11460 /*                                  Dept. of Computer Science */
11461 /*                                       Univ. of North Texas */
11462 /*                                           renka@cs.unt.edu */
11463 /*                                                   03/04/03 */
11464 
11465 /*   Given unit vectors P and Q corresponding to northern */
11466 /* hemisphere points (with positive third components), this */
11467 /* subroutine draws a polygonal line which approximates the */
11468 /* projection of arc P-Q onto the plane containing the */
11469 /* equator. */
11470 
11471 /*   The line segment is drawn by writing a sequence of */
11472 /* 'moveto' and 'lineto' Postscript commands to unit LUN.  It */
11473 /* is assumed that an open file is attached to the unit, */
11474 /* header comments have been written to the file, a window- */
11475 /* to-viewport mapping has been established, etc. */
11476 
11477 /* On input: */
11478 
11479 /*       LUN = long int unit number in the range 0 to 99. */
11480 
11481 /*       P,Q = Arrays of length 3 containing the endpoints of */
11482 /*             the arc to be drawn. */
11483 
11484 /*       TOL = Maximum distance in world coordinates between */
11485 /*             the projected arc and polygonal line. */
11486 
11487 /* Input parameters are not altered by this routine. */
11488 
11489 /* On output: */
11490 
11491 /*       NSEG = Number of line segments in the polygonal */
11492 /*              approximation to the projected arc.  This is */
11493 /*              a decreasing function of TOL.  NSEG = 0 and */
11494 /*              no drawing is performed if P = Q or P = -Q */
11495 /*              or an error is encountered in writing to unit */
11496 /*              LUN. */
11497 
11498 /* STRIPACK modules required by DRWARC:  None */
11499 
11500 /* Intrinsic functions called by DRWARC:  ABS, DBLE, SQRT */
11501 
11502 /* *********************************************************** */
11503 
11504 
11505 /* Local parameters: */
11506 
11507 /* DP =    (Q-P)/NSEG */
11508 /* DU,DV = Components of the projection Q'-P' of arc P->Q */
11509 /*           onto the projection plane */
11510 /* ENRM =  Euclidean norm (or squared norm) of Q'-P' or PM */
11511 /* ERR =   Orthogonal distance from the projected midpoint */
11512 /*           PM' to the line defined by P' and Q': */
11513 /*           |Q'-P' X PM'-P'|/|Q'-P'| */
11514 /* I,K =   DO-loop indexes */
11515 /* NA =    Number of arcs (segments) in the partition of P-Q */
11516 /* P1,P2 = Pairs of adjacent points in a uniform partition of */
11517 /*           arc P-Q into NSEG segments; obtained by normal- */
11518 /*           izing PM values */
11519 /* PM =    Midpoint of arc P-Q or a point P + k*DP in a */
11520 /*           uniform partition of the line segment P-Q into */
11521 /*           NSEG segments */
11522 /* S =     Scale factor 1/NA */
11523 /* U1,V1 = Components of P' */
11524 /* U2,V2 = Components of Q' */
11525 /* UM,VM = Components of the midpoint PM' */
11526 
11527 
11528 /* Compute the midpoint PM of arc P-Q. */
11529 
11530     /* Parameter adjustments */
11531     --q;
11532     --p;
11533 
11534     /* Function Body */
11535     enrm = 0.;
11536     for (i__ = 1; i__ <= 3; ++i__) {
11537         pm[i__ - 1] = p[i__] + q[i__];
11538         enrm += pm[i__ - 1] * pm[i__ - 1];
11539 /* L1: */
11540     }
11541     if (enrm == 0.) {
11542         goto L5;
11543     }
11544     enrm = sqrt(enrm);
11545     pm[0] /= enrm;
11546     pm[1] /= enrm;
11547     pm[2] /= enrm;
11548 
11549 /* Project P, Q, and PM to P' = (U1,V1), Q' = (U2,V2), and */
11550 /*   PM' = (UM,VM), respectively. */
11551 
11552     u1 = p[1];
11553     v1 = p[2];
11554     u2 = q[1];
11555     v2 = q[2];
11556     um = pm[0];
11557     vm = pm[1];
11558 
11559 /* Compute the orthogonal distance ERR from PM' to the line */
11560 /*   defined by P' and Q'.  This is the maximum deviation */
11561 /*   between the projected arc and the line segment.  It is */
11562 /*   undefined if P' = Q'. */
11563 
11564     du = u2 - u1;
11565     dv = v2 - v1;
11566     enrm = du * du + dv * dv;
11567     if (enrm == 0.) {
11568         goto L5;
11569     }
11570     err = (d__1 = du * (vm - v1) - (um - u1) * dv, abs(d__1)) / sqrt(enrm);
11571 
11572 /* Compute the number of arcs into which P-Q will be parti- */
11573 /*   tioned (the number of line segments to be drawn): */
11574 /*   NA = ERR/TOL. */
11575 
11576     na = (int) (err / *tol + 1.);
11577 
11578 /* Initialize for loop on arcs P1-P2, where the intermediate */
11579 /*   points are obtained by normalizing PM = P + k*DP for */
11580 /*   DP = (Q-P)/NA */
11581 
11582     s = 1. / (double) na;
11583     for (i__ = 1; i__ <= 3; ++i__) {
11584         dp[i__ - 1] = s * (q[i__] - p[i__]);
11585         pm[i__ - 1] = p[i__];
11586         p1[i__ - 1] = p[i__];
11587 /* L2: */
11588     }
11589 
11590 /* Loop on arcs P1-P2, drawing the line segments associated */
11591 /*   with the projected endpoints. */
11592 
11593     i__1 = na - 1;
11594     for (k = 1; k <= i__1; ++k) {
11595         enrm = 0.;
11596         for (i__ = 1; i__ <= 3; ++i__) {
11597             pm[i__ - 1] += dp[i__ - 1];
11598             enrm += pm[i__ - 1] * pm[i__ - 1];
11599 /* L3: */
11600         }
11601         if (enrm == 0.) {
11602             goto L5;
11603         }
11604         enrm = sqrt(enrm);
11605         p2[0] = pm[0] / enrm;
11606         p2[1] = pm[1] / enrm;
11607         p2[2] = pm[2] / enrm;
11608 /*        WRITE (LUN,100,ERR=5) P1(1), P1(2), P2(1), P2(2) */
11609 /*  100   FORMAT (2F12.6,' moveto',2F12.6,' lineto') */
11610         p1[0] = p2[0];
11611         p1[1] = p2[1];
11612         p1[2] = p2[2];
11613 /* L4: */
11614     }
11615 /*      WRITE (LUN,100,ERR=5) P1(1), P1(2), Q(1), Q(2) */
11616 
11617 /* No error encountered. */
11618 
11619     *nseg = na;
11620     return 0;
11621 
11622 /* Invalid input value of P or Q. */
11623 
11624 L5:
11625     *nseg = 0;
11626     return 0;
11627 } /* drwarc_ */

int edge_ ( int *  in1,
int *  in2,
double *  x,
double *  y,
double *  z__,
int *  lwk,
int *  iwk,
int *  list,
int *  lptr,
int *  lend,
int *  ier 
)

Definition at line 11629 of file util_sparx.cpp.

References abs, ierr, left_(), optim_(), and swap_().

11632 {
11633     /* System generated locals */
11634     int i__1;
11635 
11636     /* Local variables */
11637     static int i__, n0, n1, n2;
11638     static double x0, x1, x2, y0, y1, y2, z0, z1, z2;
11639     static int nl, lp, nr;
11640     static double dp12;
11641     static int lp21, iwc, iwf, lft, lpl, iwl, nit;
11642     static double dp1l, dp2l, dp1r, dp2r;
11643     static int ierr;
11644     /* Subroutine */ int swap_(int *, int *, int *,
11645             int *, int *, int *, int *, int *);
11646     static int next, iwcp1, n1lst, iwend;
11647     /* Subroutine */ int optim_(double *, double *, double
11648             *, int *, int *, int *, int *, int *, int
11649             *, int *);
11650     static int n1frst;
11651 
11652 
11653 /* *********************************************************** */
11654 
11655 /*                                              From STRIPACK */
11656 /*                                            Robert J. Renka */
11657 /*                                  Dept. of Computer Science */
11658 /*                                       Univ. of North Texas */
11659 /*                                           renka@cs.unt.edu */
11660 /*                                                   07/30/98 */
11661 
11662 /*   Given a triangulation of N nodes and a pair of nodal */
11663 /* indexes IN1 and IN2, this routine swaps arcs as necessary */
11664 /* to force IN1 and IN2 to be adjacent.  Only arcs which */
11665 /* intersect IN1-IN2 are swapped out.  If a Delaunay triangu- */
11666 /* lation is input, the resulting triangulation is as close */
11667 /* as possible to a Delaunay triangulation in the sense that */
11668 /* all arcs other than IN1-IN2 are locally optimal. */
11669 
11670 /*   A sequence of calls to EDGE may be used to force the */
11671 /* presence of a set of edges defining the boundary of a non- */
11672 /* convex and/or multiply connected region, or to introduce */
11673 /* barriers into the triangulation.  Note that Subroutine */
11674 /* GETNP will not necessarily return closest nodes if the */
11675 /* triangulation has been constrained by a call to EDGE. */
11676 /* However, this is appropriate in some applications, such */
11677 /* as triangle-based interpolation on a nonconvex domain. */
11678 
11679 
11680 /* On input: */
11681 
11682 /*       IN1,IN2 = Indexes (of X, Y, and Z) in the range 1 to */
11683 /*                 N defining a pair of nodes to be connected */
11684 /*                 by an arc. */
11685 
11686 /*       X,Y,Z = Arrays of length N containing the Cartesian */
11687 /*               coordinates of the nodes. */
11688 
11689 /* The above parameters are not altered by this routine. */
11690 
11691 /*       LWK = Number of columns reserved for IWK.  This must */
11692 /*             be at least NI -- the number of arcs that */
11693 /*             intersect IN1-IN2.  (NI is bounded by N-3.) */
11694 
11695 /*       IWK = int work array of length at least 2*LWK. */
11696 
11697 /*       LIST,LPTR,LEND = Data structure defining the trian- */
11698 /*                        gulation.  Refer to Subroutine */
11699 /*                        TRMESH. */
11700 
11701 /* On output: */
11702 
11703 /*       LWK = Number of arcs which intersect IN1-IN2 (but */
11704 /*             not more than the input value of LWK) unless */
11705 /*             IER = 1 or IER = 3.  LWK = 0 if and only if */
11706 /*             IN1 and IN2 were adjacent (or LWK=0) on input. */
11707 
11708 /*       IWK = Array containing the indexes of the endpoints */
11709 /*             of the new arcs other than IN1-IN2 unless */
11710 /*             IER > 0 or LWK = 0.  New arcs to the left of */
11711 /*             IN1->IN2 are stored in the first K-1 columns */
11712 /*             (left portion of IWK), column K contains */
11713 /*             zeros, and new arcs to the right of IN1->IN2 */
11714 /*             occupy columns K+1,...,LWK.  (K can be deter- */
11715 /*             mined by searching IWK for the zeros.) */
11716 
11717 /*       LIST,LPTR,LEND = Data structure updated if necessary */
11718 /*                        to reflect the presence of an arc */
11719 /*                        connecting IN1 and IN2 unless IER > */
11720 /*                        0.  The data structure has been */
11721 /*                        altered if IER >= 4. */
11722 
11723 /*       IER = Error indicator: */
11724 /*             IER = 0 if no errors were encountered. */
11725 /*             IER = 1 if IN1 < 1, IN2 < 1, IN1 = IN2, */
11726 /*                     or LWK < 0 on input. */
11727 /*             IER = 2 if more space is required in IWK. */
11728 /*                     Refer to LWK. */
11729 /*             IER = 3 if IN1 and IN2 could not be connected */
11730 /*                     due to either an invalid data struc- */
11731 /*                     ture or collinear nodes (and floating */
11732 /*                     point error). */
11733 /*             IER = 4 if an error flag other than IER = 1 */
11734 /*                     was returned by OPTIM. */
11735 /*             IER = 5 if error flag 1 was returned by OPTIM. */
11736 /*                     This is not necessarily an error, but */
11737 /*                     the arcs other than IN1-IN2 may not */
11738 /*                     be optimal. */
11739 
11740 /*   An error message is written to the standard output unit */
11741 /* in the case of IER = 3 or IER = 4. */
11742 
11743 /* Modules required by EDGE:  LEFT, LSTPTR, OPTIM, SWAP, */
11744 /*                              SWPTST */
11745 
11746 /* Intrinsic function called by EDGE:  ABS */
11747 
11748 /* *********************************************************** */
11749 
11750 
11751 /* Local parameters: */
11752 
11753 /* DPij =     Dot product <Ni,Nj> */
11754 /* I =        DO-loop index and column index for IWK */
11755 /* IERR =     Error flag returned by Subroutine OPTIM */
11756 /* IWC =      IWK index between IWF and IWL -- NL->NR is */
11757 /*              stored in IWK(1,IWC)->IWK(2,IWC) */
11758 /* IWCP1 =    IWC + 1 */
11759 /* IWEND =    Input or output value of LWK */
11760 /* IWF =      IWK (column) index of the first (leftmost) arc */
11761 /*              which intersects IN1->IN2 */
11762 /* IWL =      IWK (column) index of the last (rightmost) are */
11763 /*              which intersects IN1->IN2 */
11764 /* LFT =      Flag used to determine if a swap results in the */
11765 /*              new arc intersecting IN1-IN2 -- LFT = 0 iff */
11766 /*              N0 = IN1, LFT = -1 implies N0 LEFT IN1->IN2, */
11767 /*              and LFT = 1 implies N0 LEFT IN2->IN1 */
11768 /* LP =       List pointer (index for LIST and LPTR) */
11769 /* LP21 =     Unused parameter returned by SWAP */
11770 /* LPL =      Pointer to the last neighbor of IN1 or NL */
11771 /* N0 =       Neighbor of N1 or node opposite NR->NL */
11772 /* N1,N2 =    Local copies of IN1 and IN2 */
11773 /* N1FRST =   First neighbor of IN1 */
11774 /* N1LST =    (Signed) last neighbor of IN1 */
11775 /* NEXT =     Node opposite NL->NR */
11776 /* NIT =      Flag or number of iterations employed by OPTIM */
11777 /* NL,NR =    Endpoints of an arc which intersects IN1-IN2 */
11778 /*              with NL LEFT IN1->IN2 */
11779 /* X0,Y0,Z0 = Coordinates of N0 */
11780 /* X1,Y1,Z1 = Coordinates of IN1 */
11781 /* X2,Y2,Z2 = Coordinates of IN2 */
11782 
11783 
11784 /* Store IN1, IN2, and LWK in local variables and test for */
11785 /*   errors. */
11786 
11787     /* Parameter adjustments */
11788     --lend;
11789     --lptr;
11790     --list;
11791     iwk -= 3;
11792     --z__;
11793     --y;
11794     --x;
11795 
11796     /* Function Body */
11797     n1 = *in1;
11798     n2 = *in2;
11799     iwend = *lwk;
11800     if (n1 < 1 || n2 < 1 || n1 == n2 || iwend < 0) {
11801         goto L31;
11802     }
11803 
11804 /* Test for N2 as a neighbor of N1.  LPL points to the last */
11805 /*   neighbor of N1. */
11806 
11807     lpl = lend[n1];
11808     n0 = (i__1 = list[lpl], abs(i__1));
11809     lp = lpl;
11810 L1:
11811     if (n0 == n2) {
11812         goto L30;
11813     }
11814     lp = lptr[lp];
11815     n0 = list[lp];
11816     if (lp != lpl) {
11817         goto L1;
11818     }
11819 
11820 /* Initialize parameters. */
11821 
11822     iwl = 0;
11823     nit = 0;
11824 
11825 /* Store the coordinates of N1 and N2. */
11826 
11827 L2:
11828     x1 = x[n1];
11829     y1 = y[n1];
11830     z1 = z__[n1];
11831     x2 = x[n2];
11832     y2 = y[n2];
11833     z2 = z__[n2];
11834 
11835 /* Set NR and NL to adjacent neighbors of N1 such that */
11836 /*   NR LEFT N2->N1 and NL LEFT N1->N2, */
11837 /*   (NR Forward N1->N2 or NL Forward N1->N2), and */
11838 /*   (NR Forward N2->N1 or NL Forward N2->N1). */
11839 
11840 /*   Initialization:  Set N1FRST and N1LST to the first and */
11841 /*     (signed) last neighbors of N1, respectively, and */
11842 /*     initialize NL to N1FRST. */
11843 
11844     lpl = lend[n1];
11845     n1lst = list[lpl];
11846     lp = lptr[lpl];
11847     n1frst = list[lp];
11848     nl = n1frst;
11849     if (n1lst < 0) {
11850         goto L4;
11851     }
11852 
11853 /*   N1 is an interior node.  Set NL to the first candidate */
11854 /*     for NR (NL LEFT N2->N1). */
11855 
11856 L3:
11857     if (left_(&x2, &y2, &z2, &x1, &y1, &z1, &x[nl], &y[nl], &z__[nl])) {
11858         goto L4;
11859     }
11860     lp = lptr[lp];
11861     nl = list[lp];
11862     if (nl != n1frst) {
11863         goto L3;
11864     }
11865 
11866 /*   All neighbors of N1 are strictly left of N1->N2. */
11867 
11868     goto L5;
11869 
11870 /*   NL = LIST(LP) LEFT N2->N1.  Set NR to NL and NL to the */
11871 /*     following neighbor of N1. */
11872 
11873 L4:
11874     nr = nl;
11875     lp = lptr[lp];
11876     nl = (i__1 = list[lp], abs(i__1));
11877     if (left_(&x1, &y1, &z1, &x2, &y2, &z2, &x[nl], &y[nl], &z__[nl])) {
11878 
11879 /*   NL LEFT N1->N2 and NR LEFT N2->N1.  The Forward tests */
11880 /*     are employed to avoid an error associated with */
11881 /*     collinear nodes. */
11882 
11883         dp12 = x1 * x2 + y1 * y2 + z1 * z2;
11884         dp1l = x1 * x[nl] + y1 * y[nl] + z1 * z__[nl];
11885         dp2l = x2 * x[nl] + y2 * y[nl] + z2 * z__[nl];
11886         dp1r = x1 * x[nr] + y1 * y[nr] + z1 * z__[nr];
11887         dp2r = x2 * x[nr] + y2 * y[nr] + z2 * z__[nr];
11888         if ((dp2l - dp12 * dp1l >= 0. || dp2r - dp12 * dp1r >= 0.) && (dp1l -
11889                 dp12 * dp2l >= 0. || dp1r - dp12 * dp2r >= 0.)) {
11890             goto L6;
11891         }
11892 
11893 /*   NL-NR does not intersect N1-N2.  However, there is */
11894 /*     another candidate for the first arc if NL lies on */
11895 /*     the line N1-N2. */
11896 
11897         if (! left_(&x2, &y2, &z2, &x1, &y1, &z1, &x[nl], &y[nl], &z__[nl])) {
11898             goto L5;
11899         }
11900     }
11901 
11902 /*   Bottom of loop. */
11903 
11904     if (nl != n1frst) {
11905         goto L4;
11906     }
11907 
11908 /* Either the triangulation is invalid or N1-N2 lies on the */
11909 /*   convex hull boundary and an edge NR->NL (opposite N1 and */
11910 /*   intersecting N1-N2) was not found due to floating point */
11911 /*   error.  Try interchanging N1 and N2 -- NIT > 0 iff this */
11912 /*   has already been done. */
11913 
11914 L5:
11915     if (nit > 0) {
11916         goto L33;
11917     }
11918     nit = 1;
11919     n1 = n2;
11920     n2 = *in1;
11921     goto L2;
11922 
11923 /* Store the ordered sequence of intersecting edges NL->NR in */
11924 /*   IWK(1,IWL)->IWK(2,IWL). */
11925 
11926 L6:
11927     ++iwl;
11928     if (iwl > iwend) {
11929         goto L32;
11930     }
11931     iwk[(iwl << 1) + 1] = nl;
11932     iwk[(iwl << 1) + 2] = nr;
11933 
11934 /*   Set NEXT to the neighbor of NL which follows NR. */
11935 
11936     lpl = lend[nl];
11937     lp = lptr[lpl];
11938 
11939 /*   Find NR as a neighbor of NL.  The search begins with */
11940 /*     the first neighbor. */
11941 
11942 L7:
11943     if (list[lp] == nr) {
11944         goto L8;
11945     }
11946     lp = lptr[lp];
11947     if (lp != lpl) {
11948         goto L7;
11949     }
11950 
11951 /*   NR must be the last neighbor, and NL->NR cannot be a */
11952 /*     boundary edge. */
11953 
11954     if (list[lp] != nr) {
11955         goto L33;
11956     }
11957 
11958 /*   Set NEXT to the neighbor following NR, and test for */
11959 /*     termination of the store loop. */
11960 
11961 L8:
11962     lp = lptr[lp];
11963     next = (i__1 = list[lp], abs(i__1));
11964     if (next == n2) {
11965         goto L9;
11966     }
11967 
11968 /*   Set NL or NR to NEXT. */
11969 
11970     if (left_(&x1, &y1, &z1, &x2, &y2, &z2, &x[next], &y[next], &z__[next])) {
11971         nl = next;
11972     } else {
11973         nr = next;
11974     }
11975     goto L6;
11976 
11977 /* IWL is the number of arcs which intersect N1-N2. */
11978 /*   Store LWK. */
11979 
11980 L9:
11981     *lwk = iwl;
11982     iwend = iwl;
11983 
11984 /* Initialize for edge swapping loop -- all possible swaps */
11985 /*   are applied (even if the new arc again intersects */
11986 /*   N1-N2), arcs to the left of N1->N2 are stored in the */
11987 /*   left portion of IWK, and arcs to the right are stored in */
11988 /*   the right portion.  IWF and IWL index the first and last */
11989 /*   intersecting arcs. */
11990 
11991     iwf = 1;
11992 
11993 /* Top of loop -- set N0 to N1 and NL->NR to the first edge. */
11994 /*   IWC points to the arc currently being processed.  LFT */
11995 /*   .LE. 0 iff N0 LEFT N1->N2. */
11996 
11997 L10:
11998     lft = 0;
11999     n0 = n1;
12000     x0 = x1;
12001     y0 = y1;
12002     z0 = z1;
12003     nl = iwk[(iwf << 1) + 1];
12004     nr = iwk[(iwf << 1) + 2];
12005     iwc = iwf;
12006 
12007 /*   Set NEXT to the node opposite NL->NR unless IWC is the */
12008 /*     last arc. */
12009 
12010 L11:
12011     if (iwc == iwl) {
12012         goto L21;
12013     }
12014     iwcp1 = iwc + 1;
12015     next = iwk[(iwcp1 << 1) + 1];
12016     if (next != nl) {
12017         goto L16;
12018     }
12019     next = iwk[(iwcp1 << 1) + 2];
12020 
12021 /*   NEXT RIGHT N1->N2 and IWC .LT. IWL.  Test for a possible */
12022 /*     swap. */
12023 
12024     if (! left_(&x0, &y0, &z0, &x[nr], &y[nr], &z__[nr], &x[next], &y[next], &
12025             z__[next])) {
12026         goto L14;
12027     }
12028     if (lft >= 0) {
12029         goto L12;
12030     }
12031     if (! left_(&x[nl], &y[nl], &z__[nl], &x0, &y0, &z0, &x[next], &y[next], &
12032             z__[next])) {
12033         goto L14;
12034     }
12035 
12036 /*   Replace NL->NR with N0->NEXT. */
12037 
12038     swap_(&next, &n0, &nl, &nr, &list[1], &lptr[1], &lend[1], &lp21);
12039     iwk[(iwc << 1) + 1] = n0;
12040     iwk[(iwc << 1) + 2] = next;
12041     goto L15;
12042 
12043 /*   Swap NL-NR for N0-NEXT, shift columns IWC+1,...,IWL to */
12044 /*     the left, and store N0-NEXT in the right portion of */
12045 /*     IWK. */
12046 
12047 L12:
12048     swap_(&next, &n0, &nl, &nr, &list[1], &lptr[1], &lend[1], &lp21);
12049     i__1 = iwl;
12050     for (i__ = iwcp1; i__ <= i__1; ++i__) {
12051         iwk[(i__ - (1<<1)) + 1] = iwk[(i__ << 1) + 1];
12052         iwk[(i__ - (1<<1)) + 2] = iwk[(i__ << 1) + 2];
12053 /* L13: */
12054     }
12055     iwk[(iwl << 1) + 1] = n0;
12056     iwk[(iwl << 1) + 2] = next;
12057     --iwl;
12058     nr = next;
12059     goto L11;
12060 
12061 /*   A swap is not possible.  Set N0 to NR. */
12062 
12063 L14:
12064     n0 = nr;
12065     x0 = x[n0];
12066     y0 = y[n0];
12067     z0 = z__[n0];
12068     lft = 1;
12069 
12070 /*   Advance to the next arc. */
12071 
12072 L15:
12073     nr = next;
12074     ++iwc;
12075     goto L11;
12076 
12077 /*   NEXT LEFT N1->N2, NEXT .NE. N2, and IWC .LT. IWL. */
12078 /*     Test for a possible swap. */
12079 
12080 L16:
12081     if (! left_(&x[nl], &y[nl], &z__[nl], &x0, &y0, &z0, &x[next], &y[next], &
12082             z__[next])) {
12083         goto L19;
12084     }
12085     if (lft <= 0) {
12086         goto L17;
12087     }
12088     if (! left_(&x0, &y0, &z0, &x[nr], &y[nr], &z__[nr], &x[next], &y[next], &
12089             z__[next])) {
12090         goto L19;
12091     }
12092 
12093 /*   Replace NL->NR with NEXT->N0. */
12094 
12095     swap_(&next, &n0, &nl, &nr, &list[1], &lptr[1], &lend[1], &lp21);
12096     iwk[(iwc << 1) + 1] = next;
12097     iwk[(iwc << 1) + 2] = n0;
12098     goto L20;
12099 
12100 /*   Swap NL-NR for N0-NEXT, shift columns IWF,...,IWC-1 to */
12101 /*     the right, and store N0-NEXT in the left portion of */
12102 /*     IWK. */
12103 
12104 L17:
12105     swap_(&next, &n0, &nl, &nr, &list[1], &lptr[1], &lend[1], &lp21);
12106     i__1 = iwf;
12107     for (i__ = iwc - 1; i__ >= i__1; --i__) {
12108         iwk[(i__ + (1<<1)) + 1] = iwk[(i__ << 1) + 1];
12109         iwk[(i__ + (1<<1)) + 2] = iwk[(i__ << 1) + 2];
12110 /* L18: */
12111     }
12112     iwk[(iwf << 1) + 1] = n0;
12113     iwk[(iwf << 1) + 2] = next;
12114     ++iwf;
12115     goto L20;
12116 
12117 /*   A swap is not possible.  Set N0 to NL. */
12118 
12119 L19:
12120     n0 = nl;
12121     x0 = x[n0];
12122     y0 = y[n0];
12123     z0 = z__[n0];
12124     lft = -1;
12125 
12126 /*   Advance to the next arc. */
12127 
12128 L20:
12129     nl = next;
12130     ++iwc;
12131     goto L11;
12132 
12133 /*   N2 is opposite NL->NR (IWC = IWL). */
12134 
12135 L21:
12136     if (n0 == n1) {
12137         goto L24;
12138     }
12139     if (lft < 0) {
12140         goto L22;
12141     }
12142 
12143 /*   N0 RIGHT N1->N2.  Test for a possible swap. */
12144 
12145     if (! left_(&x0, &y0, &z0, &x[nr], &y[nr], &z__[nr], &x2, &y2, &z2)) {
12146         goto L10;
12147     }
12148 
12149 /*   Swap NL-NR for N0-N2 and store N0-N2 in the right */
12150 /*     portion of IWK. */
12151 
12152     swap_(&n2, &n0, &nl, &nr, &list[1], &lptr[1], &lend[1], &lp21);
12153     iwk[(iwl << 1) + 1] = n0;
12154     iwk[(iwl << 1) + 2] = n2;
12155     --iwl;
12156     goto L10;
12157 
12158 /*   N0 LEFT N1->N2.  Test for a possible swap. */
12159 
12160 L22:
12161     if (! left_(&x[nl], &y[nl], &z__[nl], &x0, &y0, &z0, &x2, &y2, &z2)) {
12162         goto L10;
12163     }
12164 
12165 /*   Swap NL-NR for N0-N2, shift columns IWF,...,IWL-1 to the */
12166 /*     right, and store N0-N2 in the left portion of IWK. */
12167 
12168     swap_(&n2, &n0, &nl, &nr, &list[1], &lptr[1], &lend[1], &lp21);
12169     i__ = iwl;
12170 L23:
12171     iwk[(i__ << 1) + 1] = iwk[(i__ - (1<<1)) + 1];
12172     iwk[(i__ << 1) + 2] = iwk[(i__ - (1<<1)) + 2];
12173     --i__;
12174     if (i__ > iwf) {
12175         goto L23;
12176     }
12177     iwk[(iwf << 1) + 1] = n0;
12178     iwk[(iwf << 1) + 2] = n2;
12179     ++iwf;
12180     goto L10;
12181 
12182 /* IWF = IWC = IWL.  Swap out the last arc for N1-N2 and */
12183 /*   store zeros in IWK. */
12184 
12185 L24:
12186     swap_(&n2, &n1, &nl, &nr, &list[1], &lptr[1], &lend[1], &lp21);
12187     iwk[(iwc << 1) + 1] = 0;
12188     iwk[(iwc << 1) + 2] = 0;
12189 
12190 /* Optimization procedure -- */
12191 
12192     *ier = 0;
12193     if (iwc > 1) {
12194 
12195 /*   Optimize the set of new arcs to the left of IN1->IN2. */
12196 
12197         nit = iwc - (1<<2);
12198         i__1 = iwc - 1;
12199         optim_(&x[1], &y[1], &z__[1], &i__1, &list[1], &lptr[1], &lend[1], &
12200                 nit, &iwk[3], &ierr);
12201         if (ierr != 0 && ierr != 1) {
12202             goto L34;
12203         }
12204         if (ierr == 1) {
12205             *ier = 5;
12206         }
12207     }
12208     if (iwc < iwend) {
12209 
12210 /*   Optimize the set of new arcs to the right of IN1->IN2. */
12211 
12212         nit = iwend - (iwc<<2);
12213         i__1 = iwend - iwc;
12214         optim_(&x[1], &y[1], &z__[1], &i__1, &list[1], &lptr[1], &lend[1], &
12215                 nit, &iwk[(iwc + (1<<1)) + 1], &ierr);
12216         if (ierr != 0 && ierr != 1) {
12217             goto L34;
12218         }
12219         if (ierr == 1) {
12220             goto L35;
12221         }
12222     }
12223     if (*ier == 5) {
12224         goto L35;
12225     }
12226 
12227 /* Successful termination (IER = 0). */
12228 
12229     return 0;
12230 
12231 /* IN1 and IN2 were adjacent on input. */
12232 
12233 L30:
12234     *ier = 0;
12235     return 0;
12236 
12237 /* Invalid input parameter. */
12238 
12239 L31:
12240     *ier = 1;
12241     return 0;
12242 
12243 /* Insufficient space reserved for IWK. */
12244 
12245 L32:
12246     *ier = 2;
12247     return 0;
12248 
12249 /* Invalid triangulation data structure or collinear nodes */
12250 /*   on convex hull boundary. */
12251 
12252 L33:
12253     *ier = 3;
12254 /*      WRITE (*,130) IN1, IN2 */
12255 /*  130 FORMAT (//5X,'*** Error in EDGE:  Invalid triangula', */
12256 /*     .        'tion or null triangles on boundary'/ */
12257 /*     .        9X,'IN1 =',I4,', IN2=',I4/) */
12258     return 0;
12259 
12260 /* Error flag (other than 1) returned by OPTIM. */
12261 
12262 L34:
12263     *ier = 4;
12264 /*      WRITE (*,140) NIT, IERR */
12265 /*  140 FORMAT (//5X,'*** Error in OPTIM (called from EDGE):', */
12266 /*     .        '  NIT = ',I4,', IER = ',I1,' ***'/) */
12267     return 0;
12268 
12269 /* Error flag 1 returned by OPTIM. */
12270 
12271 L35:
12272     *ier = 5;
12273     return 0;
12274 } /* edge_ */

int find_group ( int  ix,
int  iy,
int  iz,
int  grpid,
EMData mg,
EMData visited 
)

Definition at line 20022 of file util_sparx.cpp.

References EMAN::EMData::get_xsize(), EMAN::EMData::get_ysize(), EMAN::EMData::get_zsize(), nx, ny, and EMAN::EMData::set_value_at().

Referenced by EMAN::Util::get_biggest_cluster().

20023 {
20024         int offs[][3] = { {-1, 0, 0}, {1, 0, 0}, {0, -1, 0}, {0, 1, 0}, {0, 0, -1}, {0, 0, 1} };
20025         int noff = 6;
20026 
20027         int nx = visited->get_xsize();
20028         int ny = visited->get_ysize();
20029         int nz = visited->get_zsize();
20030 
20031         vector< point3d_t > pts;
20032         pts.push_back( point3d_t(ix, iy, iz) );
20033         visited->set_value_at( ix, iy, iz, (float)grpid );
20034 
20035         int start = 0;
20036         int end = pts.size();
20037 
20038         while( end > start ) {
20039                 for(int i=start; i < end; ++i ) {
20040                         int ix = pts[i].x;
20041                         int iy = pts[i].y;
20042                         int iz = pts[i].z;
20043 
20044                         for( int j=0; j < noff; ++j ) {
20045                                 int jx = ix + offs[j][0];
20046                                 int jy = iy + offs[j][1];
20047                                 int jz = iz + offs[j][2];
20048 
20049                                 if( jx < 0 || jx >= nx ) continue;
20050                                 if( jy < 0 || jy >= ny ) continue;
20051                                 if( jz < 0 || jz >= nz ) continue;
20052 
20053 
20054                                 if( (*mg)(jx, jy, jz)>0 && (*visited)(jx, jy, jz)==0.0 ) {
20055                                     pts.push_back( point3d_t(jx, jy, jz) );
20056                                     visited->set_value_at( jx, jy, jz, (float)grpid );
20057                                 }
20058 
20059                         }
20060                 }
20061 
20062                 start = end;
20063                 end = pts.size();
20064         }
20065         return pts.size();
20066 }

int getnp_ ( double *  x,
double *  y,
double *  z__,
int *  list,
int *  lptr,
int *  lend,
int *  l,
int *  npts,
double *  df,
int *  ier 
)

Definition at line 12276 of file util_sparx.cpp.

References abs.

12279 {
12280     /* System generated locals */
12281     int i__1, i__2;
12282 
12283     /* Local variables */
12284     static int i__, n1;
12285     static double x1, y1, z1;
12286     static int nb, ni, lp, np, lm1;
12287     static double dnb, dnp;
12288     static int lpl;
12289 
12290 
12291 /* *********************************************************** */
12292 
12293 /*                                              From STRIPACK */
12294 /*                                            Robert J. Renka */
12295 /*                                  Dept. of Computer Science */
12296 /*                                       Univ. of North Texas */
12297 /*                                           renka@cs.unt.edu */
12298 /*                                                   07/28/98 */
12299 
12300 /*   Given a Delaunay triangulation of N nodes on the unit */
12301 /* sphere and an array NPTS containing the indexes of L-1 */
12302 /* nodes ordered by angular distance from NPTS(1), this sub- */
12303 /* routine sets NPTS(L) to the index of the next node in the */
12304 /* sequence -- the node, other than NPTS(1),...,NPTS(L-1), */
12305 /* that is closest to NPTS(1).  Thus, the ordered sequence */
12306 /* of K closest nodes to N1 (including N1) may be determined */
12307 /* by K-1 calls to GETNP with NPTS(1) = N1 and L = 2,3,...,K */
12308 /* for K .GE. 2. */
12309 
12310 /*   The algorithm uses the property of a Delaunay triangula- */
12311 /* tion that the K-th closest node to N1 is a neighbor of one */
12312 /* of the K-1 closest nodes to N1. */
12313 
12314 
12315 /* On input: */
12316 
12317 /*       X,Y,Z = Arrays of length N containing the Cartesian */
12318 /*               coordinates of the nodes. */
12319 
12320 /*       LIST,LPTR,LEND = Triangulation data structure.  Re- */
12321 /*                        fer to Subroutine TRMESH. */
12322 
12323 /*       L = Number of nodes in the sequence on output.  2 */
12324 /*           .LE. L .LE. N. */
12325 
12326 /* The above parameters are not altered by this routine. */
12327 
12328 /*       NPTS = Array of length .GE. L containing the indexes */
12329 /*              of the L-1 closest nodes to NPTS(1) in the */
12330 /*              first L-1 locations. */
12331 
12332 /* On output: */
12333 
12334 /*       NPTS = Array updated with the index of the L-th */
12335 /*              closest node to NPTS(1) in position L unless */
12336 /*              IER = 1. */
12337 
12338 /*       DF = Value of an increasing function (negative cos- */
12339 /*            ine) of the angular distance between NPTS(1) */
12340 /*            and NPTS(L) unless IER = 1. */
12341 
12342 /*       IER = Error indicator: */
12343 /*             IER = 0 if no errors were encountered. */
12344 /*             IER = 1 if L < 2. */
12345 
12346 /* Modules required by GETNP:  None */
12347 
12348 /* Intrinsic function called by GETNP:  ABS */
12349 
12350 /* *********************************************************** */
12351 
12352 
12353 /* Local parameters: */
12354 
12355 /* DNB,DNP =  Negative cosines of the angular distances from */
12356 /*              N1 to NB and to NP, respectively */
12357 /* I =        NPTS index and DO-loop index */
12358 /* LM1 =      L-1 */
12359 /* LP =       LIST pointer of a neighbor of NI */
12360 /* LPL =      Pointer to the last neighbor of NI */
12361 /* N1 =       NPTS(1) */
12362 /* NB =       Neighbor of NI and candidate for NP */
12363 /* NI =       NPTS(I) */
12364 /* NP =       Candidate for NPTS(L) */
12365 /* X1,Y1,Z1 = Coordinates of N1 */
12366 
12367     /* Parameter adjustments */
12368     --x;
12369     --y;
12370     --z__;
12371     --list;
12372     --lptr;
12373     --lend;
12374     --npts;
12375 
12376     /* Function Body */
12377     lm1 = *l - 1;
12378     if (lm1 < 1) {
12379         goto L6;
12380     }
12381     *ier = 0;
12382 
12383 /* Store N1 = NPTS(1) and mark the elements of NPTS. */
12384 
12385     n1 = npts[1];
12386     x1 = x[n1];
12387     y1 = y[n1];
12388     z1 = z__[n1];
12389     i__1 = lm1;
12390     for (i__ = 1; i__ <= i__1; ++i__) {
12391         ni = npts[i__];
12392         lend[ni] = -lend[ni];
12393 /* L1: */
12394     }
12395 
12396 /* Candidates for NP = NPTS(L) are the unmarked neighbors */
12397 /*   of nodes in NPTS.  DNP is initially greater than -cos(PI) */
12398 /*   (the maximum distance). */
12399 
12400     dnp = 2.;
12401 
12402 /* Loop on nodes NI in NPTS. */
12403 
12404     i__1 = lm1;
12405     for (i__ = 1; i__ <= i__1; ++i__) {
12406         ni = npts[i__];
12407         lpl = -lend[ni];
12408         lp = lpl;
12409 
12410 /* Loop on neighbors NB of NI. */
12411 
12412 L2:
12413         nb = (i__2 = list[lp], abs(i__2));
12414         if (lend[nb] < 0) {
12415             goto L3;
12416         }
12417 
12418 /* NB is an unmarked neighbor of NI.  Replace NP if NB is */
12419 /*   closer to N1. */
12420 
12421         dnb = -(x[nb] * x1 + y[nb] * y1 + z__[nb] * z1);
12422         if (dnb >= dnp) {
12423             goto L3;
12424         }
12425         np = nb;
12426         dnp = dnb;
12427 L3:
12428         lp = lptr[lp];
12429         if (lp != lpl) {
12430             goto L2;
12431         }
12432 /* L4: */
12433     }
12434     npts[*l] = np;
12435     *df = dnp;
12436 
12437 /* Unmark the elements of NPTS. */
12438 
12439     i__1 = lm1;
12440     for (i__ = 1; i__ <= i__1; ++i__) {
12441         ni = npts[i__];
12442         lend[ni] = -lend[ni];
12443 /* L5: */
12444     }
12445     return 0;
12446 
12447 /* L is outside its valid range. */
12448 
12449 L6:
12450     *ier = 1;
12451     return 0;
12452 } /* getnp_ */

int i_dnnt ( double *  x  ) 

Definition at line 7935 of file util_sparx.cpp.

Referenced by trplot_(), and vrplot_().

07937 {
07938         return (int)(*x >= 0. ? floor(*x + .5) : -floor(.5 - *x));
07939 }

int insert_ ( int *  k,
int *  lp,
int *  list,
int *  lptr,
int *  lnew 
)

Definition at line 12454 of file util_sparx.cpp.

Referenced by bdyadd_(), covsph_(), and intadd_().

12456 {
12457     static int lsav;
12458 
12459 
12460 /* *********************************************************** */
12461 
12462 /*                                              From STRIPACK */
12463 /*                                            Robert J. Renka */
12464 /*                                  Dept. of Computer Science */
12465 /*                                       Univ. of North Texas */
12466 /*                                           renka@cs.unt.edu */
12467 /*                                                   07/17/96 */
12468 
12469 /*   This subroutine inserts K as a neighbor of N1 following */
12470 /* N2, where LP is the LIST pointer of N2 as a neighbor of */
12471 /* N1.  Note that, if N2 is the last neighbor of N1, K will */
12472 /* become the first neighbor (even if N1 is a boundary node). */
12473 
12474 /*   This routine is identical to the similarly named routine */
12475 /* in TRIPACK. */
12476 
12477 
12478 /* On input: */
12479 
12480 /*       K = Index of the node to be inserted. */
12481 
12482 /*       LP = LIST pointer of N2 as a neighbor of N1. */
12483 
12484 /* The above parameters are not altered by this routine. */
12485 
12486 /*       LIST,LPTR,LNEW = Data structure defining the trian- */
12487 /*                        gulation.  Refer to Subroutine */
12488 /*                        TRMESH. */
12489 
12490 /* On output: */
12491 
12492 /*       LIST,LPTR,LNEW = Data structure updated with the */
12493 /*                        addition of node K. */
12494 
12495 /* Modules required by INSERT:  None */
12496 
12497 /* *********************************************************** */
12498 
12499 
12500     /* Parameter adjustments */
12501     --lptr;
12502     --list;
12503 
12504     /* Function Body */
12505     lsav = lptr[*lp];
12506     lptr[*lp] = *lnew;
12507     list[*lnew] = *k;
12508     lptr[*lnew] = lsav;
12509     ++(*lnew);
12510     return 0;
12511 } /* insert_ */

long int inside_ ( double *  p,
int *  lv,
double *  xv,
double *  yv,
double *  zv,
int *  nv,
int *  listv,
int *  ier 
)

Definition at line 12513 of file util_sparx.cpp.

References b, ierr, intrsc_(), q, sqrt(), and TRUE_.

12515 {
12516     /* Initialized data */
12517 
12518     static double eps = .001;
12519 
12520     /* System generated locals */
12521     int i__1;
12522     long int ret_val = 0;
12523 
12524     /* Builtin functions */
12525     //double sqrt(double);
12526 
12527     /* Local variables */
12528     static double b[3], d__;
12529     static int k, n;
12530     static double q[3];
12531     static int i1, i2, k0;
12532     static double v1[3], v2[3], cn[3], bp, bq;
12533     static int ni;
12534     static double pn[3], qn[3], vn[3];
12535     static int imx;
12536     static long int lft1, lft2, even;
12537     static int ierr;
12538     static long int pinr, qinr;
12539     static double qnrm, vnrm;
12540     /* Subroutine */ int intrsc_(double *, double *,
12541             double *, double *, int *);
12542 
12543 
12544 /* *********************************************************** */
12545 
12546 /*                                              From STRIPACK */
12547 /*                                            Robert J. Renka */
12548 /*                                  Dept. of Computer Science */
12549 /*                                       Univ. of North Texas */
12550 /*                                           renka@cs.unt.edu */
12551 /*                                                   12/27/93 */
12552 
12553 /*   This function locates a point P relative to a polygonal */
12554 /* region R on the surface of the unit sphere, returning */
12555 /* INSIDE = TRUE if and only if P is contained in R.  R is */
12556 /* defined by a cyclically ordered sequence of vertices which */
12557 /* form a positively-oriented simple closed curve.  Adjacent */
12558 /* vertices need not be distinct but the curve must not be */
12559 /* self-intersecting.  Also, while polygon edges are by defi- */
12560 /* nition restricted to a single hemisphere, R is not so */
12561 /* restricted.  Its interior is the region to the left as the */
12562 /* vertices are traversed in order. */
12563 
12564 /*   The algorithm consists of selecting a point Q in R and */
12565 /* then finding all points at which the great circle defined */
12566 /* by P and Q intersects the boundary of R.  P lies inside R */
12567 /* if and only if there is an even number of intersection */
12568 /* points between Q and P.  Q is taken to be a point immedi- */
12569 /* ately to the left of a directed boundary edge -- the first */
12570 /* one that results in no consistency-check failures. */
12571 
12572 /*   If P is close to the polygon boundary, the problem is */
12573 /* ill-conditioned and the decision may be incorrect.  Also, */
12574 /* an incorrect decision may result from a poor choice of Q */
12575 /* (if, for example, a boundary edge lies on the great cir- */
12576 /* cle defined by P and Q).  A more reliable result could be */
12577 /* obtained by a sequence of calls to INSIDE with the ver- */
12578 /* tices cyclically permuted before each call (to alter the */
12579 /* choice of Q). */
12580 
12581 
12582 /* On input: */
12583 
12584 /*       P = Array of length 3 containing the Cartesian */
12585 /*           coordinates of the point (unit vector) to be */
12586 /*           located. */
12587 
12588 /*       LV = Length of arrays XV, YV, and ZV. */
12589 
12590 /*       XV,YV,ZV = Arrays of length LV containing the Carte- */
12591 /*                  sian coordinates of unit vectors (points */
12592 /*                  on the unit sphere).  These values are */
12593 /*                  not tested for validity. */
12594 
12595 /*       NV = Number of vertices in the polygon.  3 .LE. NV */
12596 /*            .LE. LV. */
12597 
12598 /*       LISTV = Array of length NV containing the indexes */
12599 /*               (for XV, YV, and ZV) of a cyclically-ordered */
12600 /*               (and CCW-ordered) sequence of vertices that */
12601 /*               define R.  The last vertex (indexed by */
12602 /*               LISTV(NV)) is followed by the first (indexed */
12603 /*               by LISTV(1)).  LISTV entries must be in the */
12604 /*               range 1 to LV. */
12605 
12606 /* Input parameters are not altered by this function. */
12607 
12608 /* On output: */
12609 
12610 /*       INSIDE = TRUE if and only if P lies inside R unless */
12611 /*                IER .NE. 0, in which case the value is not */
12612 /*                altered. */
12613 
12614 /*       IER = Error indicator: */
12615 /*             IER = 0 if no errors were encountered. */
12616 /*             IER = 1 if LV or NV is outside its valid */
12617 /*                     range. */
12618 /*             IER = 2 if a LISTV entry is outside its valid */
12619 /*                     range. */
12620 /*             IER = 3 if the polygon boundary was found to */
12621 /*                     be self-intersecting.  This error will */
12622 /*                     not necessarily be detected. */
12623 /*             IER = 4 if every choice of Q (one for each */
12624 /*                     boundary edge) led to failure of some */
12625 /*                     internal consistency check.  The most */
12626 /*                     likely cause of this error is invalid */
12627 /*                     input:  P = (0,0,0), a null or self- */
12628 /*                     intersecting polygon, etc. */
12629 
12630 /* Module required by INSIDE:  INTRSC */
12631 
12632 /* Intrinsic function called by INSIDE:  SQRT */
12633 
12634 /* *********************************************************** */
12635 
12636 
12637 /* Local parameters: */
12638 
12639 /* B =         Intersection point between the boundary and */
12640 /*               the great circle defined by P and Q */
12641 /* BP,BQ =     <B,P> and <B,Q>, respectively, maximized over */
12642 /*               intersection points B that lie between P and */
12643 /*               Q (on the shorter arc) -- used to find the */
12644 /*               closest intersection points to P and Q */
12645 /* CN =        Q X P = normal to the plane of P and Q */
12646 /* D =         Dot product <B,P> or <B,Q> */
12647 /* EPS =       Parameter used to define Q as the point whose */
12648 /*               orthogonal distance to (the midpoint of) */
12649 /*               boundary edge V1->V2 is approximately EPS/ */
12650 /*               (2*Cos(A/2)), where <V1,V2> = Cos(A). */
12651 /* EVEN =      TRUE iff an even number of intersection points */
12652 /*               lie between P and Q (on the shorter arc) */
12653 /* I1,I2 =     Indexes (LISTV elements) of a pair of adjacent */
12654 /*               boundary vertices (endpoints of a boundary */
12655 /*               edge) */
12656 /* IERR =      Error flag for calls to INTRSC (not tested) */
12657 /* IMX =       Local copy of LV and maximum value of I1 and */
12658 /*               I2 */
12659 /* K =         DO-loop index and LISTV index */
12660 /* K0 =        LISTV index of the first endpoint of the */
12661 /*               boundary edge used to compute Q */
12662 /* LFT1,LFT2 = long int variables associated with I1 and I2 in */
12663 /*               the boundary traversal:  TRUE iff the vertex */
12664 /*               is strictly to the left of Q->P (<V,CN> > 0) */
12665 /* N =         Local copy of NV */
12666 /* NI =        Number of intersections (between the boundary */
12667 /*               curve and the great circle P-Q) encountered */
12668 /* PINR =      TRUE iff P is to the left of the directed */
12669 /*               boundary edge associated with the closest */
12670 /*               intersection point to P that lies between P */
12671 /*               and Q (a left-to-right intersection as */
12672 /*               viewed from Q), or there is no intersection */
12673 /*               between P and Q (on the shorter arc) */
12674 /* PN,QN =     P X CN and CN X Q, respectively:  used to */
12675 /*               locate intersections B relative to arc Q->P */
12676 /* Q =         (V1 + V2 + EPS*VN/VNRM)/QNRM, where V1->V2 is */
12677 /*               the boundary edge indexed by LISTV(K0) -> */
12678 /*               LISTV(K0+1) */
12679 /* QINR =      TRUE iff Q is to the left of the directed */
12680 /*               boundary edge associated with the closest */
12681 /*               intersection point to Q that lies between P */
12682 /*               and Q (a right-to-left intersection as */
12683 /*               viewed from Q), or there is no intersection */
12684 /*               between P and Q (on the shorter arc) */
12685 /* QNRM =      Euclidean norm of V1+V2+EPS*VN/VNRM used to */
12686 /*               compute (normalize) Q */
12687 /* V1,V2 =     Vertices indexed by I1 and I2 in the boundary */
12688 /*               traversal */
12689 /* VN =        V1 X V2, where V1->V2 is the boundary edge */
12690 /*               indexed by LISTV(K0) -> LISTV(K0+1) */
12691 /* VNRM =      Euclidean norm of VN */
12692 
12693     /* Parameter adjustments */
12694     --p;
12695     --zv;
12696     --yv;
12697     --xv;
12698     --listv;
12699 
12700     /* Function Body */
12701 
12702 /* Store local parameters, test for error 1, and initialize */
12703 /*   K0. */
12704 
12705     imx = *lv;
12706     n = *nv;
12707     if (n < 3 || n > imx) {
12708         goto L11;
12709     }
12710     k0 = 0;
12711     i1 = listv[1];
12712     if (i1 < 1 || i1 > imx) {
12713         goto L12;
12714     }
12715 
12716 /* Increment K0 and set Q to a point immediately to the left */
12717 /*   of the midpoint of edge V1->V2 = LISTV(K0)->LISTV(K0+1): */
12718 /*   Q = (V1 + V2 + EPS*VN/VNRM)/QNRM, where VN = V1 X V2. */
12719 
12720 L1:
12721     ++k0;
12722     if (k0 > n) {
12723         goto L14;
12724     }
12725     i1 = listv[k0];
12726     if (k0 < n) {
12727         i2 = listv[k0 + 1];
12728     } else {
12729         i2 = listv[1];
12730     }
12731     if (i2 < 1 || i2 > imx) {
12732         goto L12;
12733     }
12734     vn[0] = yv[i1] * zv[i2] - zv[i1] * yv[i2];
12735     vn[1] = zv[i1] * xv[i2] - xv[i1] * zv[i2];
12736     vn[2] = xv[i1] * yv[i2] - yv[i1] * xv[i2];
12737     vnrm = sqrt(vn[0] * vn[0] + vn[1] * vn[1] + vn[2] * vn[2]);
12738     if (vnrm == 0.) {
12739         goto L1;
12740     }
12741     q[0] = xv[i1] + xv[i2] + eps * vn[0] / vnrm;
12742     q[1] = yv[i1] + yv[i2] + eps * vn[1] / vnrm;
12743     q[2] = zv[i1] + zv[i2] + eps * vn[2] / vnrm;
12744     qnrm = sqrt(q[0] * q[0] + q[1] * q[1] + q[2] * q[2]);
12745     q[0] /= qnrm;
12746     q[1] /= qnrm;
12747     q[2] /= qnrm;
12748 
12749 /* Compute CN = Q X P, PN = P X CN, and QN = CN X Q. */
12750 
12751     cn[0] = q[1] * p[3] - q[2] * p[2];
12752     cn[1] = q[2] * p[1] - q[0] * p[3];
12753     cn[2] = q[0] * p[2] - q[1] * p[1];
12754     if (cn[0] == 0. && cn[1] == 0. && cn[2] == 0.) {
12755         goto L1;
12756     }
12757     pn[0] = p[2] * cn[2] - p[3] * cn[1];
12758     pn[1] = p[3] * cn[0] - p[1] * cn[2];
12759     pn[2] = p[1] * cn[1] - p[2] * cn[0];
12760     qn[0] = cn[1] * q[2] - cn[2] * q[1];
12761     qn[1] = cn[2] * q[0] - cn[0] * q[2];
12762     qn[2] = cn[0] * q[1] - cn[1] * q[0];
12763 
12764 /* Initialize parameters for the boundary traversal. */
12765 
12766     ni = 0;
12767     even = TRUE_;
12768     bp = -2.;
12769     bq = -2.;
12770     pinr = TRUE_;
12771     qinr = TRUE_;
12772     i2 = listv[n];
12773     if (i2 < 1 || i2 > imx) {
12774         goto L12;
12775     }
12776     lft2 = cn[0] * xv[i2] + cn[1] * yv[i2] + cn[2] * zv[i2] > 0.;
12777 
12778 /* Loop on boundary arcs I1->I2. */
12779 
12780     i__1 = n;
12781     for (k = 1; k <= i__1; ++k) {
12782         i1 = i2;
12783         lft1 = lft2;
12784         i2 = listv[k];
12785         if (i2 < 1 || i2 > imx) {
12786             goto L12;
12787         }
12788         lft2 = cn[0] * xv[i2] + cn[1] * yv[i2] + cn[2] * zv[i2] > 0.;
12789         if (lft1 == lft2) {
12790             goto L2;
12791         }
12792 
12793 /*   I1 and I2 are on opposite sides of Q->P.  Compute the */
12794 /*     point of intersection B. */
12795 
12796         ++ni;
12797         v1[0] = xv[i1];
12798         v1[1] = yv[i1];
12799         v1[2] = zv[i1];
12800         v2[0] = xv[i2];
12801         v2[1] = yv[i2];
12802         v2[2] = zv[i2];
12803         intrsc_(v1, v2, cn, b, &ierr);
12804 
12805 /*   B is between Q and P (on the shorter arc) iff */
12806 /*     B Forward Q->P and B Forward P->Q       iff */
12807 /*     <B,QN> > 0 and <B,PN> > 0. */
12808 
12809         if (b[0] * qn[0] + b[1] * qn[1] + b[2] * qn[2] > 0. && b[0] * pn[0] +
12810                 b[1] * pn[1] + b[2] * pn[2] > 0.) {
12811 
12812 /*   Update EVEN, BQ, QINR, BP, and PINR. */
12813 
12814             even = ! even;
12815             d__ = b[0] * q[0] + b[1] * q[1] + b[2] * q[2];
12816             if (d__ > bq) {
12817                 bq = d__;
12818                 qinr = lft2;
12819             }
12820             d__ = b[0] * p[1] + b[1] * p[2] + b[2] * p[3];
12821             if (d__ > bp) {
12822                 bp = d__;
12823                 pinr = lft1;
12824             }
12825         }
12826 L2:
12827         ;
12828     }
12829 
12830 /* Test for consistency:  NI must be even and QINR must be */
12831 /*   TRUE. */
12832 
12833     if (ni != ni / 2 << 1 || ! qinr) {
12834         goto L1;
12835     }
12836 
12837 /* Test for error 3:  different values of PINR and EVEN. */
12838 
12839     if (pinr != even) {
12840         goto L13;
12841     }
12842 
12843 /* No error encountered. */
12844 
12845     *ier = 0;
12846     ret_val = even;
12847     return ret_val;
12848 
12849 /* LV or NV is outside its valid range. */
12850 
12851 L11:
12852     *ier = 1;
12853     return ret_val;
12854 
12855 /* A LISTV entry is outside its valid range. */
12856 
12857 L12:
12858     *ier = 2;
12859     return ret_val;
12860 
12861 /* The polygon boundary is self-intersecting. */
12862 
12863 L13:
12864     *ier = 3;
12865     return ret_val;
12866 
12867 /* Consistency tests failed for all values of Q. */
12868 
12869 L14:
12870     *ier = 4;
12871     return ret_val;
12872 } /* inside_ */

int intadd_ ( int *  kk,
int *  i1,
int *  i2,
int *  i3,
int *  list,
int *  lptr,
int *  lend,
int *  lnew 
)

Definition at line 12874 of file util_sparx.cpp.

References insert_(), and lstptr_().

Referenced by addnod_().

12876 {
12877     static int k, n1, n2, n3, lp;
12878     /* Subroutine */ int insert_(int *, int *, int *,
12879             int *, int *);
12880     int lstptr_(int *, int *, int *, int *);
12881 
12882 
12883 /* *********************************************************** */
12884 
12885 /*                                              From STRIPACK */
12886 /*                                            Robert J. Renka */
12887 /*                                  Dept. of Computer Science */
12888 /*                                       Univ. of North Texas */
12889 /*                                           renka@cs.unt.edu */
12890 /*                                                   07/17/96 */
12891 
12892 /*   This subroutine adds an interior node to a triangulation */
12893 /* of a set of points on the unit sphere.  The data structure */
12894 /* is updated with the insertion of node KK into the triangle */
12895 /* whose vertices are I1, I2, and I3.  No optimization of the */
12896 /* triangulation is performed. */
12897 
12898 /*   This routine is identical to the similarly named routine */
12899 /* in TRIPACK. */
12900 
12901 
12902 /* On input: */
12903 
12904 /*       KK = Index of the node to be inserted.  KK .GE. 1 */
12905 /*            and KK must not be equal to I1, I2, or I3. */
12906 
12907 /*       I1,I2,I3 = Indexes of the counterclockwise-ordered */
12908 /*                  sequence of vertices of a triangle which */
12909 /*                  contains node KK. */
12910 
12911 /* The above parameters are not altered by this routine. */
12912 
12913 /*       LIST,LPTR,LEND,LNEW = Data structure defining the */
12914 /*                             triangulation.  Refer to Sub- */
12915 /*                             routine TRMESH.  Triangle */
12916 /*                             (I1,I2,I3) must be included */
12917 /*                             in the triangulation. */
12918 
12919 /* On output: */
12920 
12921 /*       LIST,LPTR,LEND,LNEW = Data structure updated with */
12922 /*                             the addition of node KK.  KK */
12923 /*                             will be connected to nodes I1, */
12924 /*                             I2, and I3. */
12925 
12926 /* Modules required by INTADD:  INSERT, LSTPTR */
12927 
12928 /* *********************************************************** */
12929 
12930 
12931 /* Local parameters: */
12932 
12933 /* K =        Local copy of KK */
12934 /* LP =       LIST pointer */
12935 /* N1,N2,N3 = Local copies of I1, I2, and I3 */
12936 
12937     /* Parameter adjustments */
12938     --lend;
12939     --lptr;
12940     --list;
12941 
12942     /* Function Body */
12943     k = *kk;
12944 
12945 /* Initialization. */
12946 
12947     n1 = *i1;
12948     n2 = *i2;
12949     n3 = *i3;
12950 
12951 /* Add K as a neighbor of I1, I2, and I3. */
12952 
12953     lp = lstptr_(&lend[n1], &n2, &list[1], &lptr[1]);
12954     insert_(&k, &lp, &list[1], &lptr[1], lnew);
12955     lp = lstptr_(&lend[n2], &n3, &list[1], &lptr[1]);
12956     insert_(&k, &lp, &list[1], &lptr[1], lnew);
12957     lp = lstptr_(&lend[n3], &n1, &list[1], &lptr[1]);
12958     insert_(&k, &lp, &list[1], &lptr[1], lnew);
12959 
12960 /* Add I1, I2, and I3 as neighbors of K. */
12961 
12962     list[*lnew] = n1;
12963     list[*lnew + 1] = n2;
12964     list[*lnew + 2] = n3;
12965     lptr[*lnew] = *lnew + 1;
12966     lptr[*lnew + 1] = *lnew + 2;
12967     lptr[*lnew + 2] = *lnew;
12968     lend[k] = *lnew + 2;
12969     *lnew += 3;
12970     return 0;
12971 } /* intadd_ */

int intrsc_ ( double *  p1,
double *  p2,
double *  cn,
double *  p,
int *  ier 
)

Definition at line 12973 of file util_sparx.cpp.

References sqrt(), and t.

Referenced by inside_().

12975 {
12976     /* Builtin functions */
12977     //double sqrt(double);
12978 
12979     /* Local variables */
12980     static int i__;
12981     static double t, d1, d2, pp[3], ppn;
12982 
12983 
12984 /* *********************************************************** */
12985 
12986 /*                                              From STRIPACK */
12987 /*                                            Robert J. Renka */
12988 /*                                  Dept. of Computer Science */
12989 /*                                       Univ. of North Texas */
12990 /*                                           renka@cs.unt.edu */
12991 /*                                                   07/19/90 */
12992 
12993 /*   Given a great circle C and points P1 and P2 defining an */
12994 /* arc A on the surface of the unit sphere, where A is the */
12995 /* shorter of the two portions of the great circle C12 assoc- */
12996 /* iated with P1 and P2, this subroutine returns the point */
12997 /* of intersection P between C and C12 that is closer to A. */
12998 /* Thus, if P1 and P2 lie in opposite hemispheres defined by */
12999 /* C, P is the point of intersection of C with A. */
13000 
13001 
13002 /* On input: */
13003 
13004 /*       P1,P2 = Arrays of length 3 containing the Cartesian */
13005 /*               coordinates of unit vectors. */
13006 
13007 /*       CN = Array of length 3 containing the Cartesian */
13008 /*            coordinates of a nonzero vector which defines C */
13009 /*            as the intersection of the plane whose normal */
13010 /*            is CN with the unit sphere.  Thus, if C is to */
13011 /*            be the great circle defined by P and Q, CN */
13012 /*            should be P X Q. */
13013 
13014 /* The above parameters are not altered by this routine. */
13015 
13016 /*       P = Array of length 3. */
13017 
13018 /* On output: */
13019 
13020 /*       P = Point of intersection defined above unless IER */
13021 /*           .NE. 0, in which case P is not altered. */
13022 
13023 /*       IER = Error indicator. */
13024 /*             IER = 0 if no errors were encountered. */
13025 /*             IER = 1 if <CN,P1> = <CN,P2>.  This occurs */
13026 /*                     iff P1 = P2 or CN = 0 or there are */
13027 /*                     two intersection points at the same */
13028 /*                     distance from A. */
13029 /*             IER = 2 if P2 = -P1 and the definition of A is */
13030 /*                     therefore ambiguous. */
13031 
13032 /* Modules required by INTRSC:  None */
13033 
13034 /* Intrinsic function called by INTRSC:  SQRT */
13035 
13036 /* *********************************************************** */
13037 
13038 
13039 /* Local parameters: */
13040 
13041 /* D1 =  <CN,P1> */
13042 /* D2 =  <CN,P2> */
13043 /* I =   DO-loop index */
13044 /* PP =  P1 + T*(P2-P1) = Parametric representation of the */
13045 /*         line defined by P1 and P2 */
13046 /* PPN = Norm of PP */
13047 /* T =   D1/(D1-D2) = Parameter value chosen so that PP lies */
13048 /*         in the plane of C */
13049 
13050     /* Parameter adjustments */
13051     --p;
13052     --cn;
13053     --p2;
13054     --p1;
13055 
13056     /* Function Body */
13057     d1 = cn[1] * p1[1] + cn[2] * p1[2] + cn[3] * p1[3];
13058     d2 = cn[1] * p2[1] + cn[2] * p2[2] + cn[3] * p2[3];
13059 
13060     if (d1 == d2) {
13061         *ier = 1;
13062         return 0;
13063     }
13064 
13065 /* Solve for T such that <PP,CN> = 0 and compute PP and PPN. */
13066 
13067     t = d1 / (d1 - d2);
13068     ppn = 0.;
13069     for (i__ = 1; i__ <= 3; ++i__) {
13070         pp[i__ - 1] = p1[i__] + t * (p2[i__] - p1[i__]);
13071         ppn += pp[i__ - 1] * pp[i__ - 1];
13072 /* L1: */
13073     }
13074 
13075 /* PPN = 0 iff PP = 0 iff P2 = -P1 (and T = .5). */
13076 
13077     if (ppn == 0.) {
13078         *ier = 2;
13079         return 0;
13080     }
13081     ppn = sqrt(ppn);
13082 
13083 /* Compute P = PP/PPN. */
13084 
13085     for (i__ = 1; i__ <= 3; ++i__) {
13086         p[i__] = pp[i__ - 1] / ppn;
13087 /* L2: */
13088     }
13089     *ier = 0;
13090     return 0;
13091 } /* intrsc_ */

bool jiafunc ( int  i,
int  j 
)

Definition at line 21324 of file util_sparx.cpp.

Referenced by EMAN::Util::branch_factor_0(), EMAN::Util::branch_factor_2(), EMAN::Util::branch_factor_3(), and EMAN::Util::branch_factor_4().

21324                           {
21325         return (costlist_global[j] < costlist_global[i]) ;
21326 
21327 }

int jrand_ ( int *  n,
int *  ix,
int *  iy,
int *  iz 
)

Definition at line 13093 of file util_sparx.cpp.

Referenced by trfind_().

13094 {
13095     /* System generated locals */
13096     int ret_val;
13097 
13098     /* Local variables */
13099     static float u, x;
13100 
13101 
13102 /* *********************************************************** */
13103 
13104 /*                                              From STRIPACK */
13105 /*                                            Robert J. Renka */
13106 /*                                  Dept. of Computer Science */
13107 /*                                       Univ. of North Texas */
13108 /*                                           renka@cs.unt.edu */
13109 /*                                                   07/28/98 */
13110 
13111 /*   This function returns a uniformly distributed pseudo- */
13112 /* random int in the range 1 to N. */
13113 
13114 
13115 /* On input: */
13116 
13117 /*       N = Maximum value to be returned. */
13118 
13119 /* N is not altered by this function. */
13120 
13121 /*       IX,IY,IZ = int seeds initialized to values in */
13122 /*                  the range 1 to 30,000 before the first */
13123 /*                  call to JRAND, and not altered between */
13124 /*                  subsequent calls (unless a sequence of */
13125 /*                  random numbers is to be repeated by */
13126 /*                  reinitializing the seeds). */
13127 
13128 /* On output: */
13129 
13130 /*       IX,IY,IZ = Updated int seeds. */
13131 
13132 /*       JRAND = Random int in the range 1 to N. */
13133 
13134 /* Reference:  B. A. Wichmann and I. D. Hill, "An Efficient */
13135 /*             and Portable Pseudo-random Number Generator", */
13136 /*             Applied Statistics, Vol. 31, No. 2, 1982, */
13137 /*             pp. 188-190. */
13138 
13139 /* Modules required by JRAND:  None */
13140 
13141 /* Intrinsic functions called by JRAND:  INT, MOD, float */
13142 
13143 /* *********************************************************** */
13144 
13145 
13146 /* Local parameters: */
13147 
13148 /* U = Pseudo-random number uniformly distributed in the */
13149 /*     interval (0,1). */
13150 /* X = Pseudo-random number in the range 0 to 3 whose frac- */
13151 /*       tional part is U. */
13152 
13153     *ix = *ix * 171 % 30269;
13154     *iy = *iy * 172 % 30307;
13155     *iz = *iz * 170 % 30323;
13156     x = (float) (*ix) / 30269.f + (float) (*iy) / 30307.f + (float) (*iz) /
13157             30323.f;
13158     u = x - (int) x;
13159     ret_val = (int) ((float) (*n) * u + 1.f);
13160     return ret_val;
13161 } /* jrand_ */

long int left_ ( double *  ,
double *  ,
double *  ,
double *  ,
double *  ,
double *  ,
double *  ,
double *  ,
double *   
)

Definition at line 13163 of file util_sparx.cpp.

Referenced by angle_(), delnod_(), edge_(), trmesh_(), and EMAN::Util::trmsh3_().

13166 {
13167     /* System generated locals */
13168     long int ret_val;
13169 
13170 
13171 /* *********************************************************** */
13172 
13173 /*                                              From STRIPACK */
13174 /*                                            Robert J. Renka */
13175 /*                                  Dept. of Computer Science */
13176 /*                                       Univ. of North Texas */
13177 /*                                           renka@cs.unt.edu */
13178 /*                                                   07/15/96 */
13179 
13180 /*   This function determines whether node N0 is in the */
13181 /* (closed) left hemisphere defined by the plane containing */
13182 /* N1, N2, and the origin, where left is defined relative to */
13183 /* an observer at N1 facing N2. */
13184 
13185 
13186 /* On input: */
13187 
13188 /*       X1,Y1,Z1 = Coordinates of N1. */
13189 
13190 /*       X2,Y2,Z2 = Coordinates of N2. */
13191 
13192 /*       X0,Y0,Z0 = Coordinates of N0. */
13193 
13194 /* Input parameters are not altered by this function. */
13195 
13196 /* On output: */
13197 
13198 /*       LEFT = TRUE if and only if N0 is in the closed */
13199 /*              left hemisphere. */
13200 
13201 /* Modules required by LEFT:  None */
13202 
13203 /* *********************************************************** */
13204 
13205 /* LEFT = TRUE iff <N0,N1 X N2> = det(N0,N1,N2) .GE. 0. */
13206 
13207     ret_val = *x0 * (*y1 * *z2 - *y2 * *z1) - *y0 * (*x1 * *z2 - *x2 * *z1) +
13208             *z0 * (*x1 * *y2 - *x2 * *y1) >= -0.000001;
13209 
13210 
13211     return ret_val;
13212 } /* left_ */

int lstptr_ ( int *  lpl,
int *  nb,
int *  list,
int *  lptr 
)

Definition at line 13214 of file util_sparx.cpp.

Referenced by addnod_(), crlist_(), delarc_(), delnod_(), intadd_(), nearnd_(), swap_(), and trfind_().

13215 {
13216     /* System generated locals */
13217     int ret_val;
13218 
13219     /* Local variables */
13220     static int nd, lp;
13221 
13222 
13223 /* *********************************************************** */
13224 
13225 /*                                              From STRIPACK */
13226 /*                                            Robert J. Renka */
13227 /*                                  Dept. of Computer Science */
13228 /*                                       Univ. of North Texas */
13229 /*                                           renka@cs.unt.edu */
13230 /*                                                   07/15/96 */
13231 
13232 /*   This function returns the index (LIST pointer) of NB in */
13233 /* the adjacency list for N0, where LPL = LEND(N0). */
13234 
13235 /*   This function is identical to the similarly named */
13236 /* function in TRIPACK. */
13237 
13238 
13239 /* On input: */
13240 
13241 /*       LPL = LEND(N0) */
13242 
13243 /*       NB = Index of the node whose pointer is to be re- */
13244 /*            turned.  NB must be connected to N0. */
13245 
13246 /*       LIST,LPTR = Data structure defining the triangula- */
13247 /*                   tion.  Refer to Subroutine TRMESH. */
13248 
13249 /* Input parameters are not altered by this function. */
13250 
13251 /* On output: */
13252 
13253 /*       LSTPTR = Pointer such that LIST(LSTPTR) = NB or */
13254 /*                LIST(LSTPTR) = -NB, unless NB is not a */
13255 /*                neighbor of N0, in which case LSTPTR = LPL. */
13256 
13257 /* Modules required by LSTPTR:  None */
13258 
13259 /* *********************************************************** */
13260 
13261 
13262 /* Local parameters: */
13263 
13264 /* LP = LIST pointer */
13265 /* ND = Nodal index */
13266 
13267     /* Parameter adjustments */
13268     --lptr;
13269     --list;
13270 
13271     /* Function Body */
13272     lp = lptr[*lpl];
13273 L1:
13274     nd = list[lp];
13275     if (nd == *nb) {
13276         goto L2;
13277     }
13278     lp = lptr[lp];
13279     if (lp != *lpl) {
13280         goto L1;
13281     }
13282 
13283 L2:
13284     ret_val = lp;
13285     return ret_val;
13286 } /* lstptr_ */

int nbcnt_ ( int *  lpl,
int *  lptr 
)

Definition at line 13288 of file util_sparx.cpp.

Referenced by delnod_().

13289 {
13290     /* System generated locals */
13291     int ret_val;
13292 
13293     /* Local variables */
13294     static int k, lp;
13295 
13296 
13297 /* *********************************************************** */
13298 
13299 /*                                              From STRIPACK */
13300 /*                                            Robert J. Renka */
13301 /*                                  Dept. of Computer Science */
13302 /*                                       Univ. of North Texas */
13303 /*                                           renka@cs.unt.edu */
13304 /*                                                   07/15/96 */
13305 
13306 /*   This function returns the number of neighbors of a node */
13307 /* N0 in a triangulation created by Subroutine TRMESH. */
13308 
13309 /*   This function is identical to the similarly named */
13310 /* function in TRIPACK. */
13311 
13312 
13313 /* On input: */
13314 
13315 /*       LPL = LIST pointer to the last neighbor of N0 -- */
13316 /*             LPL = LEND(N0). */
13317 
13318 /*       LPTR = Array of pointers associated with LIST. */
13319 
13320 /* Input parameters are not altered by this function. */
13321 
13322 /* On output: */
13323 
13324 /*       NBCNT = Number of neighbors of N0. */
13325 
13326 /* Modules required by NBCNT:  None */
13327 
13328 /* *********************************************************** */
13329 
13330 
13331 /* Local parameters: */
13332 
13333 /* K =  Counter for computing the number of neighbors */
13334 /* LP = LIST pointer */
13335 
13336     /* Parameter adjustments */
13337     --lptr;
13338 
13339     /* Function Body */
13340     lp = *lpl;
13341     k = 1;
13342 
13343 L1:
13344     lp = lptr[lp];
13345     if (lp == *lpl) {
13346         goto L2;
13347     }
13348     ++k;
13349     goto L1;
13350 
13351 L2:
13352     ret_val = k;
13353     return ret_val;
13354 } /* nbcnt_ */

int nearnd_ ( double *  p,
int *  ist,
int *  n,
double *  x,
double *  y,
double *  z__,
int *  list,
int *  lptr,
int *  lend,
double *  al 
)

Definition at line 13356 of file util_sparx.cpp.

References abs, lstptr_(), nn(), and trfind_().

13359 {
13360     /* System generated locals */
13361     int ret_val, i__1;
13362 
13363     /* Builtin functions */
13364     //double acos(double);
13365 
13366     /* Local variables */
13367     static int l;
13368     static double b1, b2, b3;
13369     static int i1, i2, i3, n1, n2, n3, lp, nn, nr;
13370     static double ds1;
13371     static int lp1, lp2;
13372     static double dx1, dx2, dx3, dy1, dy2, dy3, dz1, dz2, dz3;
13373     static int lpl;
13374     static double dsr;
13375     static int nst, listp[25], lptrp[25];
13376     /* Subroutine */ int trfind_(int *, double *, int *,
13377             double *, double *, double *, int *, int *,
13378             int *, double *, double *, double *, int *,
13379             int *, int *);
13380     int lstptr_(int *, int *, int *, int *);
13381 
13382 
13383 /* *********************************************************** */
13384 
13385 /*                                              From STRIPACK */
13386 /*                                            Robert J. Renka */
13387 /*                                  Dept. of Computer Science */
13388 /*                                       Univ. of North Texas */
13389 /*                                           renka@cs.unt.edu */
13390 /*                                                   07/28/98 */
13391 
13392 /*   Given a point P on the surface of the unit sphere and a */
13393 /* Delaunay triangulation created by Subroutine TRMESH, this */
13394 /* function returns the index of the nearest triangulation */
13395 /* node to P. */
13396 
13397 /*   The algorithm consists of implicitly adding P to the */
13398 /* triangulation, finding the nearest neighbor to P, and */
13399 /* implicitly deleting P from the triangulation.  Thus, it */
13400 /* is based on the fact that, if P is a node in a Delaunay */
13401 /* triangulation, the nearest node to P is a neighbor of P. */
13402 
13403 
13404 /* On input: */
13405 
13406 /*       P = Array of length 3 containing the Cartesian coor- */
13407 /*           dinates of the point P to be located relative to */
13408 /*           the triangulation.  It is assumed without a test */
13409 /*           that P(1)**2 + P(2)**2 + P(3)**2 = 1. */
13410 
13411 /*       IST = Index of a node at which TRFIND begins the */
13412 /*             search.  Search time depends on the proximity */
13413 /*             of this node to P. */
13414 
13415 /*       N = Number of nodes in the triangulation.  N .GE. 3. */
13416 
13417 /*       X,Y,Z = Arrays of length N containing the Cartesian */
13418 /*               coordinates of the nodes. */
13419 
13420 /*       LIST,LPTR,LEND = Data structure defining the trian- */
13421 /*                        gulation.  Refer to TRMESH. */
13422 
13423 /* Input parameters are not altered by this function. */
13424 
13425 /* On output: */
13426 
13427 /*       NEARND = Nodal index of the nearest node to P, or 0 */
13428 /*                if N < 3 or the triangulation data struc- */
13429 /*                ture is invalid. */
13430 
13431 /*       AL = Arc length (angular distance in radians) be- */
13432 /*            tween P and NEARND unless NEARND = 0. */
13433 
13434 /*       Note that the number of candidates for NEARND */
13435 /*       (neighbors of P) is limited to LMAX defined in */
13436 /*       the PARAMETER statement below. */
13437 
13438 /* Modules required by NEARND:  JRAND, LSTPTR, TRFIND, STORE */
13439 
13440 /* Intrinsic functions called by NEARND:  ABS, ACOS */
13441 
13442 /* *********************************************************** */
13443 
13444 
13445 /* Local parameters: */
13446 
13447 /* B1,B2,B3 =  Unnormalized barycentric coordinates returned */
13448 /*               by TRFIND */
13449 /* DS1 =       (Negative cosine of the) distance from P to N1 */
13450 /* DSR =       (Negative cosine of the) distance from P to NR */
13451 /* DX1,..DZ3 = Components of vectors used by the swap test */
13452 /* I1,I2,I3 =  Nodal indexes of a triangle containing P, or */
13453 /*               the rightmost (I1) and leftmost (I2) visible */
13454 /*               boundary nodes as viewed from P */
13455 /* L =         Length of LISTP/LPTRP and number of neighbors */
13456 /*               of P */
13457 /* LMAX =      Maximum value of L */
13458 /* LISTP =     Indexes of the neighbors of P */
13459 /* LPTRP =     Array of pointers in 1-1 correspondence with */
13460 /*               LISTP elements */
13461 /* LP =        LIST pointer to a neighbor of N1 and LISTP */
13462 /*               pointer */
13463 /* LP1,LP2 =   LISTP indexes (pointers) */
13464 /* LPL =       Pointer to the last neighbor of N1 */
13465 /* N1 =        Index of a node visible from P */
13466 /* N2 =        Index of an endpoint of an arc opposite P */
13467 /* N3 =        Index of the node opposite N1->N2 */
13468 /* NN =        Local copy of N */
13469 /* NR =        Index of a candidate for the nearest node to P */
13470 /* NST =       Index of the node at which TRFIND begins the */
13471 /*               search */
13472 
13473 
13474 /* Store local parameters and test for N invalid. */
13475 
13476     /* Parameter adjustments */
13477     --p;
13478     --lend;
13479     --z__;
13480     --y;
13481     --x;
13482     --list;
13483     --lptr;
13484 
13485     /* Function Body */
13486     nn = *n;
13487     if (nn < 3) {
13488         goto L6;
13489     }
13490     nst = *ist;
13491     if (nst < 1 || nst > nn) {
13492         nst = 1;
13493     }
13494 
13495 /* Find a triangle (I1,I2,I3) containing P, or the rightmost */
13496 /*   (I1) and leftmost (I2) visible boundary nodes as viewed */
13497 /*   from P. */
13498 
13499     trfind_(&nst, &p[1], n, &x[1], &y[1], &z__[1], &list[1], &lptr[1], &lend[
13500             1], &b1, &b2, &b3, &i1, &i2, &i3);
13501 
13502 /* Test for collinear nodes. */
13503 
13504     if (i1 == 0) {
13505         goto L6;
13506     }
13507 
13508 /* Store the linked list of 'neighbors' of P in LISTP and */
13509 /*   LPTRP.  I1 is the first neighbor, and 0 is stored as */
13510 /*   the last neighbor if P is not contained in a triangle. */
13511 /*   L is the length of LISTP and LPTRP, and is limited to */
13512 /*   LMAX. */
13513 
13514     if (i3 != 0) {
13515         listp[0] = i1;
13516         lptrp[0] = 2;
13517         listp[1] = i2;
13518         lptrp[1] = 3;
13519         listp[2] = i3;
13520         lptrp[2] = 1;
13521         l = 3;
13522     } else {
13523         n1 = i1;
13524         l = 1;
13525         lp1 = 2;
13526         listp[l - 1] = n1;
13527         lptrp[l - 1] = lp1;
13528 
13529 /*   Loop on the ordered sequence of visible boundary nodes */
13530 /*     N1 from I1 to I2. */
13531 
13532 L1:
13533         lpl = lend[n1];
13534         n1 = -list[lpl];
13535         l = lp1;
13536         lp1 = l + 1;
13537         listp[l - 1] = n1;
13538         lptrp[l - 1] = lp1;
13539         if (n1 != i2 && lp1 < 25) {
13540             goto L1;
13541         }
13542         l = lp1;
13543         listp[l - 1] = 0;
13544         lptrp[l - 1] = 1;
13545     }
13546 
13547 /* Initialize variables for a loop on arcs N1-N2 opposite P */
13548 /*   in which new 'neighbors' are 'swapped' in.  N1 follows */
13549 /*   N2 as a neighbor of P, and LP1 and LP2 are the LISTP */
13550 /*   indexes of N1 and N2. */
13551 
13552     lp2 = 1;
13553     n2 = i1;
13554     lp1 = lptrp[0];
13555     n1 = listp[lp1 - 1];
13556 
13557 /* Begin loop:  find the node N3 opposite N1->N2. */
13558 
13559 L2:
13560     lp = lstptr_(&lend[n1], &n2, &list[1], &lptr[1]);
13561     if (list[lp] < 0) {
13562         goto L3;
13563     }
13564     lp = lptr[lp];
13565     n3 = (i__1 = list[lp], abs(i__1));
13566 
13567 /* Swap test:  Exit the loop if L = LMAX. */
13568 
13569     if (l == 25) {
13570         goto L4;
13571     }
13572     dx1 = x[n1] - p[1];
13573     dy1 = y[n1] - p[2];
13574     dz1 = z__[n1] - p[3];
13575 
13576     dx2 = x[n2] - p[1];
13577     dy2 = y[n2] - p[2];
13578     dz2 = z__[n2] - p[3];
13579 
13580     dx3 = x[n3] - p[1];
13581     dy3 = y[n3] - p[2];
13582     dz3 = z__[n3] - p[3];
13583     if (dx3 * (dy2 * dz1 - dy1 * dz2) - dy3 * (dx2 * dz1 - dx1 * dz2) + dz3 *
13584             (dx2 * dy1 - dx1 * dy2) <= 0.) {
13585         goto L3;
13586     }
13587 
13588 /* Swap:  Insert N3 following N2 in the adjacency list for P. */
13589 /*        The two new arcs opposite P must be tested. */
13590 
13591     ++l;
13592     lptrp[lp2 - 1] = l;
13593     listp[l - 1] = n3;
13594     lptrp[l - 1] = lp1;
13595     lp1 = l;
13596     n1 = n3;
13597     goto L2;
13598 
13599 /* No swap:  Advance to the next arc and test for termination */
13600 /*           on N1 = I1 (LP1 = 1) or N1 followed by 0. */
13601 
13602 L3:
13603     if (lp1 == 1) {
13604         goto L4;
13605     }
13606     lp2 = lp1;
13607     n2 = n1;
13608     lp1 = lptrp[lp1 - 1];
13609     n1 = listp[lp1 - 1];
13610     if (n1 == 0) {
13611         goto L4;
13612     }
13613     goto L2;
13614 
13615 /* Set NR and DSR to the index of the nearest node to P and */
13616 /*   an increasing function (negative cosine) of its distance */
13617 /*   from P, respectively. */
13618 
13619 L4:
13620     nr = i1;
13621     dsr = -(x[nr] * p[1] + y[nr] * p[2] + z__[nr] * p[3]);
13622     i__1 = l;
13623     for (lp = 2; lp <= i__1; ++lp) {
13624         n1 = listp[lp - 1];
13625         if (n1 == 0) {
13626             goto L5;
13627         }
13628         ds1 = -(x[n1] * p[1] + y[n1] * p[2] + z__[n1] * p[3]);
13629         if (ds1 < dsr) {
13630             nr = n1;
13631             dsr = ds1;
13632         }
13633 L5:
13634         ;
13635     }
13636     dsr = -dsr;
13637     if (dsr > 1.) {
13638         dsr = 1.;
13639     }
13640     *al = acos(dsr);
13641     ret_val = nr;
13642     return ret_val;
13643 
13644 /* Invalid input. */
13645 
13646 L6:
13647     ret_val = 0;
13648     return ret_val;
13649 } /* nearnd_ */

int optim_ ( double *  x,
double *  y,
double *  z__,
int *  na,
int *  list,
int *  lptr,
int *  lend,
int *  nit,
int *  iwk,
int *  ier 
)

Definition at line 13651 of file util_sparx.cpp.

References abs, FALSE_, swap_(), swptst_(), and TRUE_.

Referenced by delnod_(), and edge_().

13654 {
13655     /* System generated locals */
13656     int i__1, i__2;
13657 
13658     /* Local variables */
13659     static int i__, n1, n2, lp, io1, io2, nna, lp21, lpl, lpp;
13660     static long int swp;
13661     static int iter;
13662     /* Subroutine */ int swap_(int *, int *, int *,
13663             int *, int *, int *, int *, int *);
13664     static int maxit;
13665     long int swptst_(int *, int *, int *, int *,
13666             double *, double *, double *);
13667 
13668 
13669 /* *********************************************************** */
13670 
13671 /*                                              From STRIPACK */
13672 /*                                            Robert J. Renka */
13673 /*                                  Dept. of Computer Science */
13674 /*                                       Univ. of North Texas */
13675 /*                                           renka@cs.unt.edu */
13676 /*                                                   07/30/98 */
13677 
13678 /*   Given a set of NA triangulation arcs, this subroutine */
13679 /* optimizes the portion of the triangulation consisting of */
13680 /* the quadrilaterals (pairs of adjacent triangles) which */
13681 /* have the arcs as diagonals by applying the circumcircle */
13682 /* test and appropriate swaps to the arcs. */
13683 
13684 /*   An iteration consists of applying the swap test and */
13685 /* swaps to all NA arcs in the order in which they are */
13686 /* stored.  The iteration is repeated until no swap occurs */
13687 /* or NIT iterations have been performed.  The bound on the */
13688 /* number of iterations may be necessary to prevent an */
13689 /* infinite loop caused by cycling (reversing the effect of a */
13690 /* previous swap) due to floating point inaccuracy when four */
13691 /* or more nodes are nearly cocircular. */
13692 
13693 
13694 /* On input: */
13695 
13696 /*       X,Y,Z = Arrays containing the nodal coordinates. */
13697 
13698 /*       NA = Number of arcs in the set.  NA .GE. 0. */
13699 
13700 /* The above parameters are not altered by this routine. */
13701 
13702 /*       LIST,LPTR,LEND = Data structure defining the trian- */
13703 /*                        gulation.  Refer to Subroutine */
13704 /*                        TRMESH. */
13705 
13706 /*       NIT = Maximum number of iterations to be performed. */
13707 /*             NIT = 4*NA should be sufficient.  NIT .GE. 1. */
13708 
13709 /*       IWK = int array dimensioned 2 by NA containing */
13710 /*             the nodal indexes of the arc endpoints (pairs */
13711 /*             of endpoints are stored in columns). */
13712 
13713 /* On output: */
13714 
13715 /*       LIST,LPTR,LEND = Updated triangulation data struc- */
13716 /*                        ture reflecting the swaps. */
13717 
13718 /*       NIT = Number of iterations performed. */
13719 
13720 /*       IWK = Endpoint indexes of the new set of arcs */
13721 /*             reflecting the swaps. */
13722 
13723 /*       IER = Error indicator: */
13724 /*             IER = 0 if no errors were encountered. */
13725 /*             IER = 1 if a swap occurred on the last of */
13726 /*                     MAXIT iterations, where MAXIT is the */
13727 /*                     value of NIT on input.  The new set */
13728 /*                     of arcs is not necessarily optimal */
13729 /*                     in this case. */
13730 /*             IER = 2 if NA < 0 or NIT < 1 on input. */
13731 /*             IER = 3 if IWK(2,I) is not a neighbor of */
13732 /*                     IWK(1,I) for some I in the range 1 */
13733 /*                     to NA.  A swap may have occurred in */
13734 /*                     this case. */
13735 /*             IER = 4 if a zero pointer was returned by */
13736 /*                     Subroutine SWAP. */
13737 
13738 /* Modules required by OPTIM:  LSTPTR, SWAP, SWPTST */
13739 
13740 /* Intrinsic function called by OPTIM:  ABS */
13741 
13742 /* *********************************************************** */
13743 
13744 
13745 /* Local parameters: */
13746 
13747 /* I =       Column index for IWK */
13748 /* IO1,IO2 = Nodal indexes of the endpoints of an arc in IWK */
13749 /* ITER =    Iteration count */
13750 /* LP =      LIST pointer */
13751 /* LP21 =    Parameter returned by SWAP (not used) */
13752 /* LPL =     Pointer to the last neighbor of IO1 */
13753 /* LPP =     Pointer to the node preceding IO2 as a neighbor */
13754 /*             of IO1 */
13755 /* MAXIT =   Input value of NIT */
13756 /* N1,N2 =   Nodes opposite IO1->IO2 and IO2->IO1, */
13757 /*             respectively */
13758 /* NNA =     Local copy of NA */
13759 /* SWP =     Flag set to TRUE iff a swap occurs in the */
13760 /*             optimization loop */
13761 
13762     /* Parameter adjustments */
13763     --x;
13764     --y;
13765     --z__;
13766     iwk -= 3;
13767     --list;
13768     --lptr;
13769     --lend;
13770 
13771     /* Function Body */
13772     nna = *na;
13773     maxit = *nit;
13774     if (nna < 0 || maxit < 1) {
13775         goto L7;
13776     }
13777 
13778 /* Initialize iteration count ITER and test for NA = 0. */
13779 
13780     iter = 0;
13781     if (nna == 0) {
13782         goto L5;
13783     }
13784 
13785 /* Top of loop -- */
13786 /*   SWP = TRUE iff a swap occurred in the current iteration. */
13787 
13788 L1:
13789     if (iter == maxit) {
13790         goto L6;
13791     }
13792     ++iter;
13793     swp = FALSE_;
13794 
13795 /*   Inner loop on arcs IO1-IO2 -- */
13796 
13797     i__1 = nna;
13798     for (i__ = 1; i__ <= i__1; ++i__) {
13799         io1 = iwk[(i__ << 1) + 1];
13800         io2 = iwk[(i__ << 1) + 2];
13801 
13802 /*   Set N1 and N2 to the nodes opposite IO1->IO2 and */
13803 /*     IO2->IO1, respectively.  Determine the following: */
13804 
13805 /*     LPL = pointer to the last neighbor of IO1, */
13806 /*     LP = pointer to IO2 as a neighbor of IO1, and */
13807 /*     LPP = pointer to the node N2 preceding IO2. */
13808 
13809         lpl = lend[io1];
13810         lpp = lpl;
13811         lp = lptr[lpp];
13812 L2:
13813         if (list[lp] == io2) {
13814             goto L3;
13815         }
13816         lpp = lp;
13817         lp = lptr[lpp];
13818         if (lp != lpl) {
13819             goto L2;
13820         }
13821 
13822 /*   IO2 should be the last neighbor of IO1.  Test for no */
13823 /*     arc and bypass the swap test if IO1 is a boundary */
13824 /*     node. */
13825 
13826         if ((i__2 = list[lp], abs(i__2)) != io2) {
13827             goto L8;
13828         }
13829         if (list[lp] < 0) {
13830             goto L4;
13831         }
13832 
13833 /*   Store N1 and N2, or bypass the swap test if IO1 is a */
13834 /*     boundary node and IO2 is its first neighbor. */
13835 
13836 L3:
13837         n2 = list[lpp];
13838         if (n2 < 0) {
13839             goto L4;
13840         }
13841         lp = lptr[lp];
13842         n1 = (i__2 = list[lp], abs(i__2));
13843 
13844 /*   Test IO1-IO2 for a swap, and update IWK if necessary. */
13845 
13846         if (! swptst_(&n1, &n2, &io1, &io2, &x[1], &y[1], &z__[1])) {
13847             goto L4;
13848         }
13849         swap_(&n1, &n2, &io1, &io2, &list[1], &lptr[1], &lend[1], &lp21);
13850         if (lp21 == 0) {
13851             goto L9;
13852         }
13853         swp = TRUE_;
13854         iwk[(i__ << 1) + 1] = n1;
13855         iwk[(i__ << 1) + 2] = n2;
13856 L4:
13857         ;
13858     }
13859     if (swp) {
13860         goto L1;
13861     }
13862 
13863 /* Successful termination. */
13864 
13865 L5:
13866     *nit = iter;
13867     *ier = 0;
13868     return 0;
13869 
13870 /* MAXIT iterations performed without convergence. */
13871 
13872 L6:
13873     *nit = maxit;
13874     *ier = 1;
13875     return 0;
13876 
13877 /* Invalid input parameter. */
13878 
13879 L7:
13880     *nit = 0;
13881     *ier = 2;
13882     return 0;
13883 
13884 /* IO2 is not a neighbor of IO1. */
13885 
13886 L8:
13887     *nit = iter;
13888     *ier = 3;
13889     return 0;
13890 
13891 /* Zero pointer returned by SWAP. */
13892 
13893 L9:
13894     *nit = iter;
13895     *ier = 4;
13896     return 0;
13897 } /* optim_ */

int projct_ ( double *  px,
double *  py,
double *  pz,
double *  ox,
double *  oy,
double *  oz,
double *  ex,
double *  ey,
double *  ez,
double *  vx,
double *  vy,
double *  vz,
long int *  init,
double *  x,
double *  y,
double *  z__,
int *  ier 
)

Definition at line 13899 of file util_sparx.cpp.

References FALSE_, and sqrt().

13904 {
13905     /* Builtin functions */
13906     //double sqrt(double);
13907 
13908     /* Local variables */
13909     static double s, sc, xe, ye, ze, xh, yh, zh, xv, yv, zv, xw, yw, zw,
13910             oes, xoe, yoe, zoe, xep, yep, zep;
13911 
13912 
13913 /* *********************************************************** */
13914 
13915 /*                        From PLTPACK, SCRPLOT, and STRIPACK */
13916 /*                                            Robert J. Renka */
13917 /*                                  Dept. of Computer Science */
13918 /*                                       Univ. of North Texas */
13919 /*                                           renka@cs.unt.edu */
13920 /*                                                   07/18/90 */
13921 
13922 /*   Given a projection plane and associated coordinate sys- */
13923 /* tem defined by an origin O, eye position E, and up-vector */
13924 /* V, this subroutine applies a perspective depth transform- */
13925 /* ation T to a point P = (PX,PY,PZ), returning the point */
13926 /* T(P) = (X,Y,Z), where X and Y are the projection plane */
13927 /* coordinates of the point that lies in the projection */
13928 /* plane and on the line defined by P and E, and Z is the */
13929 /* depth associated with P. */
13930 
13931 /*   The projection plane is defined to be the plane that */
13932 /* contains O and has normal defined by O and E. */
13933 
13934 /*   The depth Z is defined in such a way that Z < 1, T maps */
13935 /* lines to lines (and planes to planes), and if two distinct */
13936 /* points have the same projection plane coordinates, then */
13937 /* the one closer to E has a smaller depth.  (Z increases */
13938 /* monotonically with orthogonal distance from P to the plane */
13939 /* that is parallel to the projection plane and contains E.) */
13940 /* This depth value facilitates depth sorting and depth buf- */
13941 /* fer methods. */
13942 
13943 
13944 /* On input: */
13945 
13946 /*       PX,PY,PZ = Cartesian coordinates of the point P to */
13947 /*                  be mapped onto the projection plane.  The */
13948 /*                  half line that contains P and has end- */
13949 /*                  point at E must intersect the plane. */
13950 
13951 /*       OX,OY,OZ = Coordinates of O (the origin of a coordi- */
13952 /*                  nate system in the projection plane).  A */
13953 /*                  reasonable value for O is a point near */
13954 /*                  the center of an object or scene to be */
13955 /*                  viewed. */
13956 
13957 /*       EX,EY,EZ = Coordinates of the eye-position E defin- */
13958 /*                  ing the normal to the plane and the line */
13959 /*                  of sight for the projection.  E must not */
13960 /*                  coincide with O or P, and the angle be- */
13961 /*                  tween the vectors O-E and P-E must be */
13962 /*                  less than 90 degrees.  Note that E and P */
13963 /*                  may lie on opposite sides of the projec- */
13964 /*                  tion plane. */
13965 
13966 /*       VX,VY,VZ = Coordinates of a point V which defines */
13967 /*                  the positive Y axis of an X-Y coordinate */
13968 /*                  system in the projection plane as the */
13969 /*                  half-line containing O and the projection */
13970 /*                  of O+V onto the plane.  The positive X */
13971 /*                  axis has direction defined by the cross */
13972 /*                  product V X (E-O). */
13973 
13974 /* The above parameters are not altered by this routine. */
13975 
13976 /*       INIT = long int switch which must be set to TRUE on */
13977 /*              the first call and when the values of O, E, */
13978 /*              or V have been altered since a previous call. */
13979 /*              If INIT = FALSE, it is assumed that only the */
13980 /*              coordinates of P have changed since a previ- */
13981 /*              ous call.  Previously stored quantities are */
13982 /*              used for increased efficiency in this case. */
13983 
13984 /* On output: */
13985 
13986 /*       INIT = Switch with value reset to FALSE if IER = 0. */
13987 
13988 /*       X,Y = Projection plane coordinates of the point */
13989 /*             that lies in the projection plane and on the */
13990 /*             line defined by E and P.  X and Y are not */
13991 /*             altered if IER .NE. 0. */
13992 
13993 /*       Z = Depth value defined above unless IER .NE. 0. */
13994 
13995 /*       IER = Error indicator. */
13996 /*             IER = 0 if no errors were encountered. */
13997 /*             IER = 1 if the inner product of O-E with P-E */
13998 /*                     is not positive, implying that E is */
13999 /*                     too close to the plane. */
14000 /*             IER = 2 if O, E, and O+V are collinear.  See */
14001 /*                     the description of VX,VY,VZ. */
14002 
14003 /* Modules required by PROJCT:  None */
14004 
14005 /* Intrinsic function called by PROJCT:  SQRT */
14006 
14007 /* *********************************************************** */
14008 
14009 
14010 /* Local parameters: */
14011 
14012 /* OES =         Norm squared of OE -- inner product (OE,OE) */
14013 /* S =           Scale factor for computing projections */
14014 /* SC =          Scale factor for normalizing VN and HN */
14015 /* XE,YE,ZE =    Local copies of EX, EY, EZ */
14016 /* XEP,YEP,ZEP = Components of the vector EP from E to P */
14017 /* XH,YH,ZH =    Components of a unit vector HN defining the */
14018 /*                 positive X-axis in the plane */
14019 /* XOE,YOE,ZOE = Components of the vector OE from O to E */
14020 /* XV,YV,ZV =    Components of a unit vector VN defining the */
14021 /*                 positive Y-axis in the plane */
14022 /* XW,YW,ZW =    Components of the vector W from O to the */
14023 /*                 projection of P onto the plane */
14024 
14025     if (*init) {
14026 
14027 /* Compute parameters defining the transformation: */
14028 /*   17 adds, 27 multiplies, 3 divides, 2 compares, and */
14029 /*   2 square roots. */
14030 
14031 /* Set the coordinates of E to local variables, compute */
14032 /*   OE = E-O and OES, and test for OE = 0. */
14033 
14034         xe = *ex;
14035         ye = *ey;
14036         ze = *ez;
14037         xoe = xe - *ox;
14038         yoe = ye - *oy;
14039         zoe = ze - *oz;
14040         oes = xoe * xoe + yoe * yoe + zoe * zoe;
14041         if (oes == 0.) {
14042             goto L1;
14043         }
14044 
14045 /* Compute S = (OE,V)/OES and VN = V - S*OE. */
14046 
14047         s = (xoe * *vx + yoe * *vy + zoe * *vz) / oes;
14048         xv = *vx - s * xoe;
14049         yv = *vy - s * yoe;
14050         zv = *vz - s * zoe;
14051 
14052 /* Normalize VN to a unit vector. */
14053 
14054         sc = xv * xv + yv * yv + zv * zv;
14055         if (sc == 0.) {
14056             goto L2;
14057         }
14058         sc = 1. / sqrt(sc);
14059         xv = sc * xv;
14060         yv = sc * yv;
14061         zv = sc * zv;
14062 
14063 /* Compute HN = VN X OE (normalized). */
14064 
14065         xh = yv * zoe - yoe * zv;
14066         yh = xoe * zv - xv * zoe;
14067         zh = xv * yoe - xoe * yv;
14068         sc = sqrt(xh * xh + yh * yh + zh * zh);
14069         if (sc == 0.) {
14070             goto L2;
14071         }
14072         sc = 1. / sc;
14073         xh = sc * xh;
14074         yh = sc * yh;
14075         zh = sc * zh;
14076     }
14077 
14078 /* Apply the transformation:  13 adds, 12 multiplies, */
14079 /*                            1 divide, and 1 compare. */
14080 
14081 /* Compute EP = P-E, S = OES/(OE,EP), and W = OE - S*EP. */
14082 
14083     xep = *px - xe;
14084     yep = *py - ye;
14085     zep = *pz - ze;
14086     s = xoe * xep + yoe * yep + zoe * zep;
14087     if (s >= 0.) {
14088         goto L1;
14089     }
14090     s = oes / s;
14091     xw = xoe - s * xep;
14092     yw = yoe - s * yep;
14093     zw = zoe - s * zep;
14094 
14095 /* Map W into X = (W,HN), Y = (W,VN), compute Z = 1+S, and */
14096 /*   reset INIT. */
14097 
14098     *x = xw * xh + yw * yh + zw * zh;
14099     *y = xw * xv + yw * yv + zw * zv;
14100     *z__ = s + 1.;
14101     *init = FALSE_;
14102     *ier = 0;
14103     return 0;
14104 
14105 /* (OE,EP) .GE. 0. */
14106 
14107 L1:
14108     *ier = 1;
14109     return 0;
14110 
14111 /* O, E, and O+V are collinear. */
14112 
14113 L2:
14114     *ier = 2;
14115     return 0;
14116 } /* projct_ */

int random_ ( int *  ix,
int *  iy,
int *  iz,
double *  rannum 
)

Definition at line 17369 of file util_sparx.cpp.

17371 {
17372     static double x;
17373 
17374 
17375 /*   This routine returns pseudo-random numbers uniformly */
17376 /* distributed in the interval (0,1).  int seeds IX, IY, */
17377 /* and IZ should be initialized to values in the range 1 to */
17378 /* 30,000 before the first call to RANDOM, and should not */
17379 /* be altered between subsequent calls (unless a sequence */
17380 /* of random numbers is to be repeated by reinitializing the */
17381 /* seeds). */
17382 
17383 /* Reference:  B. A. Wichmann and I. D. Hill, An Efficient */
17384 /*             and Portable Pseudo-random Number Generator, */
17385 /*             Applied Statistics, Vol. 31, No. 2, 1982, */
17386 /*             pp. 188-190. */
17387 
17388     *ix = *ix * 171 % 30269;
17389     *iy = *iy * 172 % 30307;
17390     *iz = *iz * 170 % 30323;
17391     x = (double) (*ix) / 30269. + (double) (*iy) / 30307. + (
17392             double) (*iz) / 30323.;
17393     *rannum = x - (int) x;
17394     return 0;
17395 } /* random_ */

int scoord_ ( double *  px,
double *  py,
double *  pz,
double *  plat,
double *  plon,
double *  pnrm 
)

Definition at line 14118 of file util_sparx.cpp.

References sqrt().

14120 {
14121     /* Builtin functions */
14122     //double sqrt(double), atan2(double, double), asin(double);
14123 
14124 
14125 /* *********************************************************** */
14126 
14127 /*                                              From STRIPACK */
14128 /*                                            Robert J. Renka */
14129 /*                                  Dept. of Computer Science */
14130 /*                                       Univ. of North Texas */
14131 /*                                           renka@cs.unt.edu */
14132 /*                                                   08/27/90 */
14133 
14134 /*   This subroutine converts a point P from Cartesian coor- */
14135 /* dinates to spherical coordinates. */
14136 
14137 
14138 /* On input: */
14139 
14140 /*       PX,PY,PZ = Cartesian coordinates of P. */
14141 
14142 /* Input parameters are not altered by this routine. */
14143 
14144 /* On output: */
14145 
14146 /*       PLAT = Latitude of P in the range -PI/2 to PI/2, or */
14147 /*              0 if PNRM = 0.  PLAT should be scaled by */
14148 /*              180/PI to obtain the value in degrees. */
14149 
14150 /*       PLON = Longitude of P in the range -PI to PI, or 0 */
14151 /*              if P lies on the Z-axis.  PLON should be */
14152 /*              scaled by 180/PI to obtain the value in */
14153 /*              degrees. */
14154 
14155 /*       PNRM = Magnitude (Euclidean norm) of P. */
14156 
14157 /* Modules required by SCOORD:  None */
14158 
14159 /* Intrinsic functions called by SCOORD:  ASIN, ATAN2, SQRT */
14160 
14161 /* *********************************************************** */
14162 
14163     *pnrm = sqrt(*px * *px + *py * *py + *pz * *pz);
14164     if (*px != 0. || *py != 0.) {
14165         *plon = atan2(*py, *px);
14166     } else {
14167         *plon = 0.;
14168     }
14169     if (*pnrm != 0.) {
14170         *plat = asin(*pz / *pnrm);
14171     } else {
14172         *plat = 0.;
14173     }
14174     return 0;
14175 } /* scoord_ */

double store_ ( double *  x  ) 

Definition at line 14177 of file util_sparx.cpp.

References stcom_1, and stcom_::y.

Referenced by trfind_().

14178 {
14179     /* System generated locals */
14180     double ret_val;
14181 
14182 
14183 /* *********************************************************** */
14184 
14185 /*                                              From STRIPACK */
14186 /*                                            Robert J. Renka */
14187 /*                                  Dept. of Computer Science */
14188 /*                                       Univ. of North Texas */
14189 /*                                           renka@cs.unt.edu */
14190 /*                                                   05/09/92 */
14191 
14192 /*   This function forces its argument X to be stored in a */
14193 /* memory location, thus providing a means of determining */
14194 /* floating point number characteristics (such as the machine */
14195 /* precision) when it is necessary to avoid computation in */
14196 /* high precision registers. */
14197 
14198 
14199 /* On input: */
14200 
14201 /*       X = Value to be stored. */
14202 
14203 /* X is not altered by this function. */
14204 
14205 /* On output: */
14206 
14207 /*       STORE = Value of X after it has been stored and */
14208 /*               possibly truncated or rounded to the single */
14209 /*               precision word length. */
14210 
14211 /* Modules required by STORE:  None */
14212 
14213 /* *********************************************************** */
14214 
14215     stcom_1.y = *x;
14216     ret_val = stcom_1.y;
14217     return ret_val;
14218 } /* store_ */

int swap_ ( int *  in1,
int *  in2,
int *  io1,
int *  io2,
int *  list,
int *  lptr,
int *  lend,
int *  lp21 
)

Definition at line 14220 of file util_sparx.cpp.

References abs, and lstptr_().

Referenced by addnod_(), delnod_(), edge_(), and optim_().

14222 {
14223     /* System generated locals */
14224     int i__1;
14225 
14226     /* Local variables */
14227     static int lp, lph, lpsav;
14228     int lstptr_(int *, int *, int *, int *);
14229 
14230 
14231 /* *********************************************************** */
14232 
14233 /*                                              From STRIPACK */
14234 /*                                            Robert J. Renka */
14235 /*                                  Dept. of Computer Science */
14236 /*                                       Univ. of North Texas */
14237 /*                                           renka@cs.unt.edu */
14238 /*                                                   06/22/98 */
14239 
14240 /*   Given a triangulation of a set of points on the unit */
14241 /* sphere, this subroutine replaces a diagonal arc in a */
14242 /* strictly convex quadrilateral (defined by a pair of adja- */
14243 /* cent triangles) with the other diagonal.  Equivalently, a */
14244 /* pair of adjacent triangles is replaced by another pair */
14245 /* having the same union. */
14246 
14247 
14248 /* On input: */
14249 
14250 /*       IN1,IN2,IO1,IO2 = Nodal indexes of the vertices of */
14251 /*                         the quadrilateral.  IO1-IO2 is re- */
14252 /*                         placed by IN1-IN2.  (IO1,IO2,IN1) */
14253 /*                         and (IO2,IO1,IN2) must be trian- */
14254 /*                         gles on input. */
14255 
14256 /* The above parameters are not altered by this routine. */
14257 
14258 /*       LIST,LPTR,LEND = Data structure defining the trian- */
14259 /*                        gulation.  Refer to Subroutine */
14260 /*                        TRMESH. */
14261 
14262 /* On output: */
14263 
14264 /*       LIST,LPTR,LEND = Data structure updated with the */
14265 /*                        swap -- triangles (IO1,IO2,IN1) and */
14266 /*                        (IO2,IO1,IN2) are replaced by */
14267 /*                        (IN1,IN2,IO2) and (IN2,IN1,IO1) */
14268 /*                        unless LP21 = 0. */
14269 
14270 /*       LP21 = Index of IN1 as a neighbor of IN2 after the */
14271 /*              swap is performed unless IN1 and IN2 are */
14272 /*              adjacent on input, in which case LP21 = 0. */
14273 
14274 /* Module required by SWAP:  LSTPTR */
14275 
14276 /* Intrinsic function called by SWAP:  ABS */
14277 
14278 /* *********************************************************** */
14279 
14280 
14281 /* Local parameters: */
14282 
14283 /* LP,LPH,LPSAV = LIST pointers */
14284 
14285 
14286 /* Test for IN1 and IN2 adjacent. */
14287 
14288     /* Parameter adjustments */
14289     --lend;
14290     --lptr;
14291     --list;
14292 
14293     /* Function Body */
14294     lp = lstptr_(&lend[*in1], in2, &list[1], &lptr[1]);
14295     if ((i__1 = list[lp], abs(i__1)) == *in2) {
14296         *lp21 = 0;
14297         return 0;
14298     }
14299 
14300 /* Delete IO2 as a neighbor of IO1. */
14301 
14302     lp = lstptr_(&lend[*io1], in2, &list[1], &lptr[1]);
14303     lph = lptr[lp];
14304     lptr[lp] = lptr[lph];
14305 
14306 /* If IO2 is the last neighbor of IO1, make IN2 the */
14307 /*   last neighbor. */
14308 
14309     if (lend[*io1] == lph) {
14310         lend[*io1] = lp;
14311     }
14312 
14313 /* Insert IN2 as a neighbor of IN1 following IO1 */
14314 /*   using the hole created above. */
14315 
14316     lp = lstptr_(&lend[*in1], io1, &list[1], &lptr[1]);
14317     lpsav = lptr[lp];
14318     lptr[lp] = lph;
14319     list[lph] = *in2;
14320     lptr[lph] = lpsav;
14321 
14322 /* Delete IO1 as a neighbor of IO2. */
14323 
14324     lp = lstptr_(&lend[*io2], in1, &list[1], &lptr[1]);
14325     lph = lptr[lp];
14326     lptr[lp] = lptr[lph];
14327 
14328 /* If IO1 is the last neighbor of IO2, make IN1 the */
14329 /*   last neighbor. */
14330 
14331     if (lend[*io2] == lph) {
14332         lend[*io2] = lp;
14333     }
14334 
14335 /* Insert IN1 as a neighbor of IN2 following IO2. */
14336 
14337     lp = lstptr_(&lend[*in2], io2, &list[1], &lptr[1]);
14338     lpsav = lptr[lp];
14339     lptr[lp] = lph;
14340     list[lph] = *in1;
14341     lptr[lph] = lpsav;
14342     *lp21 = lph;
14343     return 0;
14344 } /* swap_ */

long int swptst_ ( int *  n1,
int *  n2,
int *  n3,
int *  n4,
double *  x,
double *  y,
double *  z__ 
)

Definition at line 14346 of file util_sparx.cpp.

Referenced by addnod_(), crlist_(), and optim_().

14348 {
14349     /* System generated locals */
14350     long int ret_val;
14351 
14352     /* Local variables */
14353     static double x4, y4, z4, dx1, dx2, dx3, dy1, dy2, dy3, dz1, dz2, dz3;
14354 
14355 
14356 /* *********************************************************** */
14357 
14358 /*                                              From STRIPACK */
14359 /*                                            Robert J. Renka */
14360 /*                                  Dept. of Computer Science */
14361 /*                                       Univ. of North Texas */
14362 /*                                           renka@cs.unt.edu */
14363 /*                                                   03/29/91 */
14364 
14365 /*   This function decides whether or not to replace a */
14366 /* diagonal arc in a quadrilateral with the other diagonal. */
14367 /* The decision will be to swap (SWPTST = TRUE) if and only */
14368 /* if N4 lies above the plane (in the half-space not contain- */
14369 /* ing the origin) defined by (N1,N2,N3), or equivalently, if */
14370 /* the projection of N4 onto this plane is interior to the */
14371 /* circumcircle of (N1,N2,N3).  The decision will be for no */
14372 /* swap if the quadrilateral is not strictly convex. */
14373 
14374 
14375 /* On input: */
14376 
14377 /*       N1,N2,N3,N4 = Indexes of the four nodes defining the */
14378 /*                     quadrilateral with N1 adjacent to N2, */
14379 /*                     and (N1,N2,N3) in counterclockwise */
14380 /*                     order.  The arc connecting N1 to N2 */
14381 /*                     should be replaced by an arc connec- */
14382 /*                     ting N3 to N4 if SWPTST = TRUE.  Refer */
14383 /*                     to Subroutine SWAP. */
14384 
14385 /*       X,Y,Z = Arrays of length N containing the Cartesian */
14386 /*               coordinates of the nodes.  (X(I),Y(I),Z(I)) */
14387 /*               define node I for I = N1, N2, N3, and N4. */
14388 
14389 /* Input parameters are not altered by this routine. */
14390 
14391 /* On output: */
14392 
14393 /*       SWPTST = TRUE if and only if the arc connecting N1 */
14394 /*                and N2 should be swapped for an arc con- */
14395 /*                necting N3 and N4. */
14396 
14397 /* Modules required by SWPTST:  None */
14398 
14399 /* *********************************************************** */
14400 
14401 
14402 /* Local parameters: */
14403 
14404 /* DX1,DY1,DZ1 = Coordinates of N4->N1 */
14405 /* DX2,DY2,DZ2 = Coordinates of N4->N2 */
14406 /* DX3,DY3,DZ3 = Coordinates of N4->N3 */
14407 /* X4,Y4,Z4 =    Coordinates of N4 */
14408 
14409     /* Parameter adjustments */
14410     --z__;
14411     --y;
14412     --x;
14413 
14414     /* Function Body */
14415     x4 = x[*n4];
14416     y4 = y[*n4];
14417     z4 = z__[*n4];
14418     dx1 = x[*n1] - x4;
14419     dx2 = x[*n2] - x4;
14420     dx3 = x[*n3] - x4;
14421     dy1 = y[*n1] - y4;
14422     dy2 = y[*n2] - y4;
14423     dy3 = y[*n3] - y4;
14424     dz1 = z__[*n1] - z4;
14425     dz2 = z__[*n2] - z4;
14426     dz3 = z__[*n3] - z4;
14427 
14428 /* N4 lies above the plane of (N1,N2,N3) iff N3 lies above */
14429 /*   the plane of (N2,N1,N4) iff Det(N3-N4,N2-N4,N1-N4) = */
14430 /*   (N3-N4,N2-N4 X N1-N4) > 0. */
14431 
14432     ret_val = dx3 * (dy2 * dz1 - dy1 * dz2) - dy3 * (dx2 * dz1 - dx1 * dz2) +
14433             dz3 * (dx2 * dy1 - dx1 * dy2) > 0.;
14434     return ret_val;
14435 } /* swptst_ */

int trans_ ( int *  n,
double *  rlat,
double *  rlon,
double *  x,
double *  y,
double *  z__ 
)

Definition at line 14437 of file util_sparx.cpp.

References nn(), phi, and theta.

14439 {
14440     /* System generated locals */
14441     int i__1;
14442 
14443     /* Builtin functions */
14444     //double cos(double), sin(double);
14445 
14446     /* Local variables */
14447     static int i__, nn;
14448     static double phi, theta, cosphi;
14449 
14450 
14451 /* *********************************************************** */
14452 
14453 /*                                              From STRIPACK */
14454 /*                                            Robert J. Renka */
14455 /*                                  Dept. of Computer Science */
14456 /*                                       Univ. of North Texas */
14457 /*                                           renka@cs.unt.edu */
14458 /*                                                   04/08/90 */
14459 
14460 /*   This subroutine transforms spherical coordinates into */
14461 /* Cartesian coordinates on the unit sphere for input to */
14462 /* Subroutine TRMESH.  Storage for X and Y may coincide with */
14463 /* storage for RLAT and RLON if the latter need not be saved. */
14464 
14465 
14466 /* On input: */
14467 
14468 /*       N = Number of nodes (points on the unit sphere) */
14469 /*           whose coordinates are to be transformed. */
14470 
14471 /*       RLAT = Array of length N containing latitudinal */
14472 /*              coordinates of the nodes in radians. */
14473 
14474 /*       RLON = Array of length N containing longitudinal */
14475 /*              coordinates of the nodes in radians. */
14476 
14477 /* The above parameters are not altered by this routine. */
14478 
14479 /*       X,Y,Z = Arrays of length at least N. */
14480 
14481 /* On output: */
14482 
14483 /*       X,Y,Z = Cartesian coordinates in the range -1 to 1. */
14484 /*               X(I)**2 + Y(I)**2 + Z(I)**2 = 1 for I = 1 */
14485 /*               to N. */
14486 
14487 /* Modules required by TRANS:  None */
14488 
14489 /* Intrinsic functions called by TRANS:  COS, SIN */
14490 
14491 /* *********************************************************** */
14492 
14493 
14494 /* Local parameters: */
14495 
14496 /* COSPHI = cos(PHI) */
14497 /* I =      DO-loop index */
14498 /* NN =     Local copy of N */
14499 /* PHI =    Latitude */
14500 /* THETA =  Longitude */
14501 
14502     /* Parameter adjustments */
14503     --z__;
14504     --y;
14505     --x;
14506     --rlon;
14507     --rlat;
14508 
14509     /* Function Body */
14510     nn = *n;
14511     i__1 = nn;
14512     for (i__ = 1; i__ <= i__1; ++i__) {
14513         phi = rlat[i__];
14514         theta = rlon[i__];
14515         cosphi = cos(phi);
14516         x[i__] = cosphi * cos(theta);
14517         y[i__] = cosphi * sin(theta);
14518         z__[i__] = sin(phi);
14519 /* L1: */
14520     }
14521     return 0;
14522 } /* trans_ */

int trfind_ ( int *  nst,
double *  p,
int *  n,
double *  x,
double *  y,
double *  z__,
int *  list,
int *  lptr,
int *  lend,
double *  b1,
double *  b2,
double *  b3,
int *  i1,
int *  i2,
int *  i3 
)

Definition at line 14524 of file util_sparx.cpp.

References abs, jrand_(), lstptr_(), q, and store_().

Referenced by addnod_(), and nearnd_().

14528 {
14529     /* Initialized data */
14530 
14531     static int ix = 1;
14532     static int iy = 2;
14533     static int iz = 3;
14534 
14535     /* System generated locals */
14536     int i__1;
14537     double d__1, d__2;
14538 
14539     /* Local variables */
14540     static double q[3];
14541     static int n0, n1, n2, n3, n4, nf;
14542     static double s12;
14543     static int nl, lp;
14544     static double xp, yp, zp;
14545     static int n1s, n2s;
14546     static double eps, tol, ptn1, ptn2;
14547     static int next;
14548     int jrand_(int *, int *, int *, int *);
14549     double store_(double *);
14550     int lstptr_(int *, int *, int *, int *);
14551 
14552 
14553 /* *********************************************************** */
14554 
14555 /*                                              From STRIPACK */
14556 /*                                            Robert J. Renka */
14557 /*                                  Dept. of Computer Science */
14558 /*                                       Univ. of North Texas */
14559 /*                                           renka@cs.unt.edu */
14560 /*                                                   11/30/99 */
14561 
14562 /*   This subroutine locates a point P relative to a triangu- */
14563 /* lation created by Subroutine TRMESH.  If P is contained in */
14564 /* a triangle, the three vertex indexes and barycentric coor- */
14565 /* dinates are returned.  Otherwise, the indexes of the */
14566 /* visible boundary nodes are returned. */
14567 
14568 
14569 /* On input: */
14570 
14571 /*       NST = Index of a node at which TRFIND begins its */
14572 /*             search.  Search time depends on the proximity */
14573 /*             of this node to P. */
14574 
14575 /*       P = Array of length 3 containing the x, y, and z */
14576 /*           coordinates (in that order) of the point P to be */
14577 /*           located. */
14578 
14579 /*       N = Number of nodes in the triangulation.  N .GE. 3. */
14580 
14581 /*       X,Y,Z = Arrays of length N containing the Cartesian */
14582 /*               coordinates of the triangulation nodes (unit */
14583 /*               vectors).  (X(I),Y(I),Z(I)) defines node I */
14584 /*               for I = 1 to N. */
14585 
14586 /*       LIST,LPTR,LEND = Data structure defining the trian- */
14587 /*                        gulation.  Refer to Subroutine */
14588 /*                        TRMESH. */
14589 
14590 /* Input parameters are not altered by this routine. */
14591 
14592 /* On output: */
14593 
14594 /*       B1,B2,B3 = Unnormalized barycentric coordinates of */
14595 /*                  the central projection of P onto the un- */
14596 /*                  derlying planar triangle if P is in the */
14597 /*                  convex hull of the nodes.  These parame- */
14598 /*                  ters are not altered if I1 = 0. */
14599 
14600 /*       I1,I2,I3 = Counterclockwise-ordered vertex indexes */
14601 /*                  of a triangle containing P if P is con- */
14602 /*                  tained in a triangle.  If P is not in the */
14603 /*                  convex hull of the nodes, I1 and I2 are */
14604 /*                  the rightmost and leftmost (boundary) */
14605 /*                  nodes that are visible from P, and */
14606 /*                  I3 = 0.  (If all boundary nodes are vis- */
14607 /*                  ible from P, then I1 and I2 coincide.) */
14608 /*                  I1 = I2 = I3 = 0 if P and all of the */
14609 /*                  nodes are coplanar (lie on a common great */
14610 /*                  circle. */
14611 
14612 /* Modules required by TRFIND:  JRAND, LSTPTR, STORE */
14613 
14614 /* Intrinsic function called by TRFIND:  ABS */
14615 
14616 /* *********************************************************** */
14617 
14618 
14619     /* Parameter adjustments */
14620     --p;
14621     --lend;
14622     --z__;
14623     --y;
14624     --x;
14625     --list;
14626     --lptr;
14627 
14628     /* Function Body */
14629 
14630 /* Local parameters: */
14631 
14632 /* EPS =      Machine precision */
14633 /* IX,IY,IZ = int seeds for JRAND */
14634 /* LP =       LIST pointer */
14635 /* N0,N1,N2 = Nodes in counterclockwise order defining a */
14636 /*              cone (with vertex N0) containing P, or end- */
14637 /*              points of a boundary edge such that P Right */
14638 /*              N1->N2 */
14639 /* N1S,N2S =  Initially-determined values of N1 and N2 */
14640 /* N3,N4 =    Nodes opposite N1->N2 and N2->N1, respectively */
14641 /* NEXT =     Candidate for I1 or I2 when P is exterior */
14642 /* NF,NL =    First and last neighbors of N0, or first */
14643 /*              (rightmost) and last (leftmost) nodes */
14644 /*              visible from P when P is exterior to the */
14645 /*              triangulation */
14646 /* PTN1 =     Scalar product <P,N1> */
14647 /* PTN2 =     Scalar product <P,N2> */
14648 /* Q =        (N2 X N1) X N2  or  N1 X (N2 X N1) -- used in */
14649 /*              the boundary traversal when P is exterior */
14650 /* S12 =      Scalar product <N1,N2> */
14651 /* TOL =      Tolerance (multiple of EPS) defining an upper */
14652 /*              bound on the magnitude of a negative bary- */
14653 /*              centric coordinate (B1 or B2) for P in a */
14654 /*              triangle -- used to avoid an infinite number */
14655 /*              of restarts with 0 <= B3 < EPS and B1 < 0 or */
14656 /*              B2 < 0 but small in magnitude */
14657 /* XP,YP,ZP = Local variables containing P(1), P(2), and P(3) */
14658 /* X0,Y0,Z0 = Dummy arguments for DET */
14659 /* X1,Y1,Z1 = Dummy arguments for DET */
14660 /* X2,Y2,Z2 = Dummy arguments for DET */
14661 
14662 /* Statement function: */
14663 
14664 /* DET(X1,...,Z0) .GE. 0 if and only if (X0,Y0,Z0) is in the */
14665 /*                       (closed) left hemisphere defined by */
14666 /*                       the plane containing (0,0,0), */
14667 /*                       (X1,Y1,Z1), and (X2,Y2,Z2), where */
14668 /*                       left is defined relative to an ob- */
14669 /*                       server at (X1,Y1,Z1) facing */
14670 /*                       (X2,Y2,Z2). */
14671 
14672 
14673 /* Initialize variables. */
14674 
14675     xp = p[1];
14676     yp = p[2];
14677     zp = p[3];
14678     n0 = *nst;
14679     if (n0 < 1 || n0 > *n) {
14680         n0 = jrand_(n, &ix, &iy, &iz);
14681     }
14682 
14683 /* Compute the relative machine precision EPS and TOL. */
14684 
14685     eps = 1.;
14686 L1:
14687     eps /= 2.;
14688     d__1 = eps + 1.;
14689     if (store_(&d__1) > 1.) {
14690         goto L1;
14691     }
14692     eps *= 2.;
14693     tol = eps * 4.;
14694 
14695 /* Set NF and NL to the first and last neighbors of N0, and */
14696 /*   initialize N1 = NF. */
14697 
14698 L2:
14699     lp = lend[n0];
14700     nl = list[lp];
14701     lp = lptr[lp];
14702     nf = list[lp];
14703     n1 = nf;
14704 
14705 /* Find a pair of adjacent neighbors N1,N2 of N0 that define */
14706 /*   a wedge containing P:  P LEFT N0->N1 and P RIGHT N0->N2. */
14707 
14708     if (nl > 0) {
14709 
14710 /*   N0 is an interior node.  Find N1. */
14711 
14712 L3:
14713         if (xp * (y[n0] * z__[n1] - y[n1] * z__[n0]) - yp * (x[n0] * z__[n1]
14714                 - x[n1] * z__[n0]) + zp * (x[n0] * y[n1] - x[n1] * y[n0]) <
14715                 -1e-10) {
14716             lp = lptr[lp];
14717             n1 = list[lp];
14718             if (n1 == nl) {
14719                 goto L6;
14720             }
14721             goto L3;
14722         }
14723     } else {
14724 
14725 /*   N0 is a boundary node.  Test for P exterior. */
14726 
14727         nl = -nl;
14728         if (xp * (y[n0] * z__[nf] - y[nf] * z__[n0]) - yp * (x[n0] * z__[nf]
14729                 - x[nf] * z__[n0]) + zp * (x[n0] * y[nf] - x[nf] * y[n0]) <
14730                 -1e-10) {
14731 
14732 /*   P is to the right of the boundary edge N0->NF. */
14733 
14734             n1 = n0;
14735             n2 = nf;
14736             goto L9;
14737         }
14738         if (xp * (y[nl] * z__[n0] - y[n0] * z__[nl]) - yp * (x[nl] * z__[n0]
14739                 - x[n0] * z__[nl]) + zp * (x[nl] * y[n0] - x[n0] * y[nl]) <
14740                 -1e-10) {
14741 
14742 /*   P is to the right of the boundary edge NL->N0. */
14743 
14744             n1 = nl;
14745             n2 = n0;
14746             goto L9;
14747         }
14748     }
14749 
14750 /* P is to the left of arcs N0->N1 and NL->N0.  Set N2 to the */
14751 /*   next neighbor of N0 (following N1). */
14752 
14753 L4:
14754     lp = lptr[lp];
14755     n2 = (i__1 = list[lp], abs(i__1));
14756     if (xp * (y[n0] * z__[n2] - y[n2] * z__[n0]) - yp * (x[n0] * z__[n2] - x[
14757             n2] * z__[n0]) + zp * (x[n0] * y[n2] - x[n2] * y[n0]) < -1e-10) {
14758         goto L7;
14759     }
14760     n1 = n2;
14761     if (n1 != nl) {
14762         goto L4;
14763     }
14764     if (xp * (y[n0] * z__[nf] - y[nf] * z__[n0]) - yp * (x[n0] * z__[nf] - x[
14765             nf] * z__[n0]) + zp * (x[n0] * y[nf] - x[nf] * y[n0]) < -1e-10) {
14766         goto L6;
14767     }
14768 
14769 /* P is left of or on arcs N0->NB for all neighbors NB */
14770 /*   of N0.  Test for P = +/-N0. */
14771 
14772     d__2 = (d__1 = x[n0] * xp + y[n0] * yp + z__[n0] * zp, abs(d__1));
14773     if (store_(&d__2) < 1. - eps * 4.) {
14774 
14775 /*   All points are collinear iff P Left NB->N0 for all */
14776 /*     neighbors NB of N0.  Search the neighbors of N0. */
14777 /*     Note:  N1 = NL and LP points to NL. */
14778 
14779 L5:
14780         if (xp * (y[n1] * z__[n0] - y[n0] * z__[n1]) - yp * (x[n1] * z__[n0]
14781                 - x[n0] * z__[n1]) + zp * (x[n1] * y[n0] - x[n0] * y[n1]) >
14782                 -1e-10) {
14783             lp = lptr[lp];
14784             n1 = (i__1 = list[lp], abs(i__1));
14785             if (n1 == nl) {
14786                 goto L14;
14787             }
14788             goto L5;
14789         }
14790     }
14791 
14792 /* P is to the right of N1->N0, or P = +/-N0.  Set N0 to N1 */
14793 /*   and start over. */
14794 
14795     n0 = n1;
14796     goto L2;
14797 
14798 /* P is between arcs N0->N1 and N0->NF. */
14799 
14800 L6:
14801     n2 = nf;
14802 
14803 /* P is contained in a wedge defined by geodesics N0-N1 and */
14804 /*   N0-N2, where N1 is adjacent to N2.  Save N1 and N2 to */
14805 /*   test for cycling. */
14806 
14807 L7:
14808     n3 = n0;
14809     n1s = n1;
14810     n2s = n2;
14811 
14812 /* Top of edge-hopping loop: */
14813 
14814 L8:
14815 
14816     *b3 = xp * (y[n1] * z__[n2] - y[n2] * z__[n1]) - yp * (x[n1] * z__[n2] -
14817             x[n2] * z__[n1]) + zp * (x[n1] * y[n2] - x[n2] * y[n1]);
14818      if (*b3 < -1e-10) {
14819 
14820 /*   Set N4 to the first neighbor of N2 following N1 (the */
14821 /*     node opposite N2->N1) unless N1->N2 is a boundary arc. */
14822 
14823         lp = lstptr_(&lend[n2], &n1, &list[1], &lptr[1]);
14824         if (list[lp] < 0) {
14825             goto L9;
14826         }
14827         lp = lptr[lp];
14828         n4 = (i__1 = list[lp], abs(i__1));
14829 
14830 /*   Define a new arc N1->N2 which intersects the geodesic */
14831 /*     N0-P. */
14832         if (xp * (y[n0] * z__[n4] - y[n4] * z__[n0]) - yp * (x[n0] * z__[n4]
14833                 - x[n4] * z__[n0]) + zp * (x[n0] * y[n4] - x[n4] * y[n0]) <
14834                 -1e-10) {
14835             n3 = n2;
14836             n2 = n4;
14837             n1s = n1;
14838             if (n2 != n2s && n2 != n0) {
14839                 goto L8;
14840             }
14841         } else {
14842             n3 = n1;
14843             n1 = n4;
14844             n2s = n2;
14845             if (n1 != n1s && n1 != n0) {
14846                 goto L8;
14847             }
14848         }
14849 
14850 /*   The starting node N0 or edge N1-N2 was encountered */
14851 /*     again, implying a cycle (infinite loop).  Restart */
14852 /*     with N0 randomly selected. */
14853 
14854         n0 = jrand_(n, &ix, &iy, &iz);
14855         goto L2;
14856     }
14857 
14858 /* P is in (N1,N2,N3) unless N0, N1, N2, and P are collinear */
14859 /*   or P is close to -N0. */
14860 
14861     if (*b3 >= eps) {
14862 
14863 /*   B3 .NE. 0. */
14864 
14865         *b1 = xp * (y[n2] * z__[n3] - y[n3] * z__[n2]) - yp * (x[n2] * z__[n3]
14866                  - x[n3] * z__[n2]) + zp * (x[n2] * y[n3] - x[n3] * y[n2]);
14867         *b2 = xp * (y[n3] * z__[n1] - y[n1] * z__[n3]) - yp * (x[n3] * z__[n1]
14868                  - x[n1] * z__[n3]) + zp * (x[n3] * y[n1] - x[n1] * y[n3]);
14869         if (*b1 < -tol || *b2 < -tol) {
14870 
14871 /*   Restart with N0 randomly selected. */
14872 
14873             n0 = jrand_(n, &ix, &iy, &iz);
14874             goto L2;
14875         }
14876     } else {
14877 
14878 /*   B3 = 0 and thus P lies on N1->N2. Compute */
14879 /*     B1 = Det(P,N2 X N1,N2) and B2 = Det(P,N1,N2 X N1). */
14880 
14881         *b3 = 0.;
14882         s12 = x[n1] * x[n2] + y[n1] * y[n2] + z__[n1] * z__[n2];
14883         ptn1 = xp * x[n1] + yp * y[n1] + zp * z__[n1];
14884         ptn2 = xp * x[n2] + yp * y[n2] + zp * z__[n2];
14885         *b1 = ptn1 - s12 * ptn2;
14886         *b2 = ptn2 - s12 * ptn1;
14887         if (*b1 < -tol || *b2 < -tol) {
14888 
14889 /*   Restart with N0 randomly selected. */
14890 
14891             n0 = jrand_(n, &ix, &iy, &iz);
14892             goto L2;
14893         }
14894     }
14895 
14896 /* P is in (N1,N2,N3). */
14897 
14898     *i1 = n1;
14899     *i2 = n2;
14900     *i3 = n3;
14901     if (*b1 < 0.f) {
14902         *b1 = 0.f;
14903     }
14904     if (*b2 < 0.f) {
14905         *b2 = 0.f;
14906     }
14907     return 0;
14908 
14909 /* P Right N1->N2, where N1->N2 is a boundary edge. */
14910 /*   Save N1 and N2, and set NL = 0 to indicate that */
14911 /*   NL has not yet been found. */
14912 
14913 L9:
14914     n1s = n1;
14915     n2s = n2;
14916     nl = 0;
14917 
14918 /*           Counterclockwise Boundary Traversal: */
14919 
14920 L10:
14921 
14922     lp = lend[n2];
14923     lp = lptr[lp];
14924     next = list[lp];
14925      if (xp * (y[n2] * z__[next] - y[next] * z__[n2]) - yp * (x[n2] * z__[next]
14926              - x[next] * z__[n2]) + zp * (x[n2] * y[next] - x[next] * y[n2])
14927             >= -1e-10) {
14928 
14929 /*   N2 is the rightmost visible node if P Forward N2->N1 */
14930 /*     or NEXT Forward N2->N1.  Set Q to (N2 X N1) X N2. */
14931 
14932         s12 = x[n1] * x[n2] + y[n1] * y[n2] + z__[n1] * z__[n2];
14933         q[0] = x[n1] - s12 * x[n2];
14934         q[1] = y[n1] - s12 * y[n2];
14935         q[2] = z__[n1] - s12 * z__[n2];
14936         if (xp * q[0] + yp * q[1] + zp * q[2] >= 0.) {
14937             goto L11;
14938         }
14939         if (x[next] * q[0] + y[next] * q[1] + z__[next] * q[2] >= 0.) {
14940             goto L11;
14941         }
14942 
14943 /*   N1, N2, NEXT, and P are nearly collinear, and N2 is */
14944 /*     the leftmost visible node. */
14945 
14946         nl = n2;
14947     }
14948 
14949 /* Bottom of counterclockwise loop: */
14950 
14951     n1 = n2;
14952     n2 = next;
14953     if (n2 != n1s) {
14954         goto L10;
14955     }
14956 
14957 /* All boundary nodes are visible from P. */
14958 
14959     *i1 = n1s;
14960     *i2 = n1s;
14961     *i3 = 0;
14962     return 0;
14963 
14964 /* N2 is the rightmost visible node. */
14965 
14966 L11:
14967     nf = n2;
14968     if (nl == 0) {
14969 
14970 /* Restore initial values of N1 and N2, and begin the search */
14971 /*   for the leftmost visible node. */
14972 
14973         n2 = n2s;
14974         n1 = n1s;
14975 
14976 /*           Clockwise Boundary Traversal: */
14977 
14978 L12:
14979         lp = lend[n1];
14980         next = -list[lp];
14981         if (xp * (y[next] * z__[n1] - y[n1] * z__[next]) - yp * (x[next] *
14982                 z__[n1] - x[n1] * z__[next]) + zp * (x[next] * y[n1] - x[n1] *
14983                  y[next]) >= -1e-10) {
14984 
14985 /*   N1 is the leftmost visible node if P or NEXT is */
14986 /*     forward of N1->N2.  Compute Q = N1 X (N2 X N1). */
14987 
14988             s12 = x[n1] * x[n2] + y[n1] * y[n2] + z__[n1] * z__[n2];
14989             q[0] = x[n2] - s12 * x[n1];
14990             q[1] = y[n2] - s12 * y[n1];
14991             q[2] = z__[n2] - s12 * z__[n1];
14992             if (xp * q[0] + yp * q[1] + zp * q[2] >= 0.) {
14993                 goto L13;
14994             }
14995             if (x[next] * q[0] + y[next] * q[1] + z__[next] * q[2] >= 0.) {
14996                 goto L13;
14997             }
14998 
14999 /*   P, NEXT, N1, and N2 are nearly collinear and N1 is the */
15000 /*     rightmost visible node. */
15001 
15002             nf = n1;
15003         }
15004 
15005 /* Bottom of clockwise loop: */
15006 
15007         n2 = n1;
15008         n1 = next;
15009         if (n1 != n1s) {
15010             goto L12;
15011         }
15012 
15013 /* All boundary nodes are visible from P. */
15014 
15015         *i1 = n1;
15016         *i2 = n1;
15017         *i3 = 0;
15018         return 0;
15019 
15020 /* N1 is the leftmost visible node. */
15021 
15022 L13:
15023         nl = n1;
15024     }
15025 
15026 /* NF and NL have been found. */
15027 
15028     *i1 = nf;
15029     *i2 = nl;
15030     *i3 = 0;
15031     return 0;
15032 
15033 /* All points are collinear (coplanar). */
15034 
15035 L14:
15036     *i1 = 0;
15037     *i2 = 0;
15038     *i3 = 0;
15039     return 0;
15040 } /* trfind_ */

int trlist_ ( int *  n,
int *  list,
int *  lptr,
int *  lend,
int *  nrow,
int *  nt,
int *  ltri,
int *  ier 
)

Definition at line 15042 of file util_sparx.cpp.

References abs.

15045 {
15046     /* System generated locals */
15047     int ltri_dim1, ltri_offset, i__1, i__2;
15048 
15049     /* Local variables */
15050     static int i__, j, i1, i2, i3, n1, n2, n3, ka, kn, lp, kt, nm2, lp2,
15051             lpl, isv;
15052     static long int arcs;
15053     static int lpln1;
15054 
15055 
15056 /* *********************************************************** */
15057 
15058 /*                                              From STRIPACK */
15059 /*                                            Robert J. Renka */
15060 /*                                  Dept. of Computer Science */
15061 /*                                       Univ. of North Texas */
15062 /*                                           renka@cs.unt.edu */
15063 /*                                                   07/20/96 */
15064 
15065 /*   This subroutine converts a triangulation data structure */
15066 /* from the linked list created by Subroutine TRMESH to a */
15067 /* triangle list. */
15068 
15069 /* On input: */
15070 
15071 /*       N = Number of nodes in the triangulation.  N .GE. 3. */
15072 
15073 /*       LIST,LPTR,LEND = Linked list data structure defin- */
15074 /*                        ing the triangulation.  Refer to */
15075 /*                        Subroutine TRMESH. */
15076 
15077 /*       NROW = Number of rows (entries per triangle) re- */
15078 /*              served for the triangle list LTRI.  The value */
15079 /*              must be 6 if only the vertex indexes and */
15080 /*              neighboring triangle indexes are to be */
15081 /*              stored, or 9 if arc indexes are also to be */
15082 /*              assigned and stored.  Refer to LTRI. */
15083 
15084 /* The above parameters are not altered by this routine. */
15085 
15086 /*       LTRI = int array of length at least NROW*NT, */
15087 /*              where NT is at most 2N-4.  (A sufficient */
15088 /*              length is 12N if NROW=6 or 18N if NROW=9.) */
15089 
15090 /* On output: */
15091 
15092 /*       NT = Number of triangles in the triangulation unless */
15093 /*            IER .NE. 0, in which case NT = 0.  NT = 2N-NB-2 */
15094 /*            if NB .GE. 3 or 2N-4 if NB = 0, where NB is the */
15095 /*            number of boundary nodes. */
15096 
15097 /*       LTRI = NROW by NT array whose J-th column contains */
15098 /*              the vertex nodal indexes (first three rows), */
15099 /*              neighboring triangle indexes (second three */
15100 /*              rows), and, if NROW = 9, arc indexes (last */
15101 /*              three rows) associated with triangle J for */
15102 /*              J = 1,...,NT.  The vertices are ordered */
15103 /*              counterclockwise with the first vertex taken */
15104 /*              to be the one with smallest index.  Thus, */
15105 /*              LTRI(2,J) and LTRI(3,J) are larger than */
15106 /*              LTRI(1,J) and index adjacent neighbors of */
15107 /*              node LTRI(1,J).  For I = 1,2,3, LTRI(I+3,J) */
15108 /*              and LTRI(I+6,J) index the triangle and arc, */
15109 /*              respectively, which are opposite (not shared */
15110 /*              by) node LTRI(I,J), with LTRI(I+3,J) = 0 if */
15111 /*              LTRI(I+6,J) indexes a boundary arc.  Vertex */
15112 /*              indexes range from 1 to N, triangle indexes */
15113 /*              from 0 to NT, and, if included, arc indexes */
15114 /*              from 1 to NA, where NA = 3N-NB-3 if NB .GE. 3 */
15115 /*              or 3N-6 if NB = 0.  The triangles are or- */
15116 /*              dered on first (smallest) vertex indexes. */
15117 
15118 /*       IER = Error indicator. */
15119 /*             IER = 0 if no errors were encountered. */
15120 /*             IER = 1 if N or NROW is outside its valid */
15121 /*                     range on input. */
15122 /*             IER = 2 if the triangulation data structure */
15123 /*                     (LIST,LPTR,LEND) is invalid.  Note, */
15124 /*                     however, that these arrays are not */
15125 /*                     completely tested for validity. */
15126 
15127 /* Modules required by TRLIST:  None */
15128 
15129 /* Intrinsic function called by TRLIST:  ABS */
15130 
15131 /* *********************************************************** */
15132 
15133 
15134 /* Local parameters: */
15135 
15136 /* ARCS =     long int variable with value TRUE iff are */
15137 /*              indexes are to be stored */
15138 /* I,J =      LTRI row indexes (1 to 3) associated with */
15139 /*              triangles KT and KN, respectively */
15140 /* I1,I2,I3 = Nodal indexes of triangle KN */
15141 /* ISV =      Variable used to permute indexes I1,I2,I3 */
15142 /* KA =       Arc index and number of currently stored arcs */
15143 /* KN =       Index of the triangle that shares arc I1-I2 */
15144 /*              with KT */
15145 /* KT =       Triangle index and number of currently stored */
15146 /*              triangles */
15147 /* LP =       LIST pointer */
15148 /* LP2 =      Pointer to N2 as a neighbor of N1 */
15149 /* LPL =      Pointer to the last neighbor of I1 */
15150 /* LPLN1 =    Pointer to the last neighbor of N1 */
15151 /* N1,N2,N3 = Nodal indexes of triangle KT */
15152 /* NM2 =      N-2 */
15153 
15154 
15155 /* Test for invalid input parameters. */
15156 
15157     /* Parameter adjustments */
15158     --lend;
15159     --list;
15160     --lptr;
15161     ltri_dim1 = *nrow;
15162     ltri_offset = 1 + ltri_dim1;
15163     ltri -= ltri_offset;
15164 
15165     /* Function Body */
15166     if (*n < 3 || (*nrow != 6 && *nrow != 9)) {
15167         goto L11;
15168     }
15169 
15170 /* Initialize parameters for loop on triangles KT = (N1,N2, */
15171 /*   N3), where N1 < N2 and N1 < N3. */
15172 
15173 /*   ARCS = TRUE iff arc indexes are to be stored. */
15174 /*   KA,KT = Numbers of currently stored arcs and triangles. */
15175 /*   NM2 = Upper bound on candidates for N1. */
15176 
15177     arcs = *nrow == 9;
15178     ka = 0;
15179     kt = 0;
15180     nm2 = *n - 2;
15181 
15182 /* Loop on nodes N1. */
15183 
15184     i__1 = nm2;
15185     for (n1 = 1; n1 <= i__1; ++n1) {
15186 
15187 /* Loop on pairs of adjacent neighbors (N2,N3).  LPLN1 points */
15188 /*   to the last neighbor of N1, and LP2 points to N2. */
15189 
15190         lpln1 = lend[n1];
15191         lp2 = lpln1;
15192 L1:
15193         lp2 = lptr[lp2];
15194         n2 = list[lp2];
15195         lp = lptr[lp2];
15196         n3 = (i__2 = list[lp], abs(i__2));
15197         if (n2 < n1 || n3 < n1) {
15198             goto L8;
15199         }
15200 
15201 /* Add a new triangle KT = (N1,N2,N3). */
15202 
15203         ++kt;
15204         ltri[kt * ltri_dim1 + 1] = n1;
15205         ltri[kt * ltri_dim1 + 2] = n2;
15206         ltri[kt * ltri_dim1 + 3] = n3;
15207 
15208 /* Loop on triangle sides (I2,I1) with neighboring triangles */
15209 /*   KN = (I1,I2,I3). */
15210 
15211         for (i__ = 1; i__ <= 3; ++i__) {
15212             if (i__ == 1) {
15213                 i1 = n3;
15214                 i2 = n2;
15215             } else if (i__ == 2) {
15216                 i1 = n1;
15217                 i2 = n3;
15218             } else {
15219                 i1 = n2;
15220                 i2 = n1;
15221             }
15222 
15223 /* Set I3 to the neighbor of I1 that follows I2 unless */
15224 /*   I2->I1 is a boundary arc. */
15225 
15226             lpl = lend[i1];
15227             lp = lptr[lpl];
15228 L2:
15229             if (list[lp] == i2) {
15230                 goto L3;
15231             }
15232             lp = lptr[lp];
15233             if (lp != lpl) {
15234                 goto L2;
15235             }
15236 
15237 /*   I2 is the last neighbor of I1 unless the data structure */
15238 /*     is invalid.  Bypass the search for a neighboring */
15239 /*     triangle if I2->I1 is a boundary arc. */
15240 
15241             if ((i__2 = list[lp], abs(i__2)) != i2) {
15242                 goto L12;
15243             }
15244             kn = 0;
15245             if (list[lp] < 0) {
15246                 goto L6;
15247             }
15248 
15249 /*   I2->I1 is not a boundary arc, and LP points to I2 as */
15250 /*     a neighbor of I1. */
15251 
15252 L3:
15253             lp = lptr[lp];
15254             i3 = (i__2 = list[lp], abs(i__2));
15255 
15256 /* Find J such that LTRI(J,KN) = I3 (not used if KN > KT), */
15257 /*   and permute the vertex indexes of KN so that I1 is */
15258 /*   smallest. */
15259 
15260             if (i1 < i2 && i1 < i3) {
15261                 j = 3;
15262             } else if (i2 < i3) {
15263                 j = 2;
15264                 isv = i1;
15265                 i1 = i2;
15266                 i2 = i3;
15267                 i3 = isv;
15268             } else {
15269                 j = 1;
15270                 isv = i1;
15271                 i1 = i3;
15272                 i3 = i2;
15273                 i2 = isv;
15274             }
15275 
15276 /* Test for KN > KT (triangle index not yet assigned). */
15277 
15278             if (i1 > n1) {
15279                 goto L7;
15280             }
15281 
15282 /* Find KN, if it exists, by searching the triangle list in */
15283 /*   reverse order. */
15284 
15285             for (kn = kt - 1; kn >= 1; --kn) {
15286                 if (ltri[kn * ltri_dim1 + 1] == i1 && ltri[kn * ltri_dim1 + 2]
15287                          == i2 && ltri[kn * ltri_dim1 + 3] == i3) {
15288                     goto L5;
15289                 }
15290 /* L4: */
15291             }
15292             goto L7;
15293 
15294 /* Store KT as a neighbor of KN. */
15295 
15296 L5:
15297             ltri[j + 3 + kn * ltri_dim1] = kt;
15298 
15299 /* Store KN as a neighbor of KT, and add a new arc KA. */
15300 
15301 L6:
15302             ltri[i__ + 3 + kt * ltri_dim1] = kn;
15303             if (arcs) {
15304                 ++ka;
15305                 ltri[i__ + 6 + kt * ltri_dim1] = ka;
15306                 if (kn != 0) {
15307                     ltri[j + 6 + kn * ltri_dim1] = ka;
15308                 }
15309             }
15310 L7:
15311             ;
15312         }
15313 
15314 /* Bottom of loop on triangles. */
15315 
15316 L8:
15317         if (lp2 != lpln1) {
15318             goto L1;
15319         }
15320 /* L9: */
15321     }
15322 
15323 /* No errors encountered. */
15324 
15325     *nt = kt;
15326     *ier = 0;
15327     return 0;
15328 
15329 /* Invalid input parameter. */
15330 
15331 L11:
15332     *nt = 0;
15333     *ier = 1;
15334     return 0;
15335 
15336 /* Invalid triangulation data structure:  I1 is a neighbor of */
15337 /*   I2, but I2 is not a neighbor of I1. */
15338 
15339 L12:
15340     *nt = 0;
15341     *ier = 2;
15342     return 0;
15343 } /* trlist_ */

int trlprt_ ( int *  n,
double *  x,
double *  y,
double *  z__,
int *  iflag,
int *  nrow,
int *  nt,
int *  ltri,
int *  lout 
)

Definition at line 15345 of file util_sparx.cpp.

15348 {
15349     /* Initialized data */
15350 
15351     static int nmax = 9999;
15352     static int nlmax = 58;
15353 
15354     /* System generated locals */
15355     int ltri_dim1, ltri_offset, i__1;
15356 
15357     /* Local variables */
15358     static int i__, k, na, nb, nl, lun;
15359 
15360 
15361 /* *********************************************************** */
15362 
15363 /*                                              From STRIPACK */
15364 /*                                            Robert J. Renka */
15365 /*                                  Dept. of Computer Science */
15366 /*                                       Univ. of North Texas */
15367 /*                                           renka@cs.unt.edu */
15368 /*                                                   07/02/98 */
15369 
15370 /*   This subroutine prints the triangle list created by Sub- */
15371 /* routine TRLIST and, optionally, the nodal coordinates */
15372 /* (either latitude and longitude or Cartesian coordinates) */
15373 /* on long int unit LOUT.  The numbers of boundary nodes, */
15374 /* triangles, and arcs are also printed. */
15375 
15376 
15377 /* On input: */
15378 
15379 /*       N = Number of nodes in the triangulation. */
15380 /*           3 .LE. N .LE. 9999. */
15381 
15382 /*       X,Y,Z = Arrays of length N containing the Cartesian */
15383 /*               coordinates of the nodes if IFLAG = 0, or */
15384 /*               (X and Y only) arrays of length N containing */
15385 /*               longitude and latitude, respectively, if */
15386 /*               IFLAG > 0, or unused dummy parameters if */
15387 /*               IFLAG < 0. */
15388 
15389 /*       IFLAG = Nodal coordinate option indicator: */
15390 /*               IFLAG = 0 if X, Y, and Z (assumed to contain */
15391 /*                         Cartesian coordinates) are to be */
15392 /*                         printed (to 6 decimal places). */
15393 /*               IFLAG > 0 if only X and Y (assumed to con- */
15394 /*                         tain longitude and latitude) are */
15395 /*                         to be printed (to 6 decimal */
15396 /*                         places). */
15397 /*               IFLAG < 0 if only the adjacency lists are to */
15398 /*                         be printed. */
15399 
15400 /*       NROW = Number of rows (entries per triangle) re- */
15401 /*              served for the triangle list LTRI.  The value */
15402 /*              must be 6 if only the vertex indexes and */
15403 /*              neighboring triangle indexes are stored, or 9 */
15404 /*              if arc indexes are also stored. */
15405 
15406 /*       NT = Number of triangles in the triangulation. */
15407 /*            1 .LE. NT .LE. 9999. */
15408 
15409 /*       LTRI = NROW by NT array whose J-th column contains */
15410 /*              the vertex nodal indexes (first three rows), */
15411 /*              neighboring triangle indexes (second three */
15412 /*              rows), and, if NROW = 9, arc indexes (last */
15413 /*              three rows) associated with triangle J for */
15414 /*              J = 1,...,NT. */
15415 
15416 /*       LOUT = long int unit number for output.  If LOUT is */
15417 /*              not in the range 0 to 99, output is written */
15418 /*              to unit 6. */
15419 
15420 /* Input parameters are not altered by this routine. */
15421 
15422 /* On output: */
15423 
15424 /*   The triangle list and nodal coordinates (as specified by */
15425 /* IFLAG) are written to unit LOUT. */
15426 
15427 /* Modules required by TRLPRT:  None */
15428 
15429 /* *********************************************************** */
15430 
15431     /* Parameter adjustments */
15432     --z__;
15433     --y;
15434     --x;
15435     ltri_dim1 = *nrow;
15436     ltri_offset = 1 + ltri_dim1;
15437     ltri -= ltri_offset;
15438 
15439     /* Function Body */
15440 
15441 /* Local parameters: */
15442 
15443 /* I =     DO-loop, nodal index, and row index for LTRI */
15444 /* K =     DO-loop and triangle index */
15445 /* LUN =   long int unit number for output */
15446 /* NA =    Number of triangulation arcs */
15447 /* NB =    Number of boundary nodes */
15448 /* NL =    Number of lines printed on the current page */
15449 /* NLMAX = Maximum number of print lines per page (except */
15450 /*           for the last page which may have two addi- */
15451 /*           tional lines) */
15452 /* NMAX =  Maximum value of N and NT (4-digit format) */
15453 
15454     lun = *lout;
15455     if (lun < 0 || lun > 99) {
15456         lun = 6;
15457     }
15458 
15459 /* Print a heading and test for invalid input. */
15460 
15461 /*      WRITE (LUN,100) N */
15462     nl = 3;
15463     if (*n < 3 || *n > nmax || (*nrow != 6 && *nrow != 9) || *nt < 1 || *nt >
15464             nmax) {
15465 
15466 /* Print an error message and exit. */
15467 
15468 /*        WRITE (LUN,110) N, NROW, NT */
15469         return 0;
15470     }
15471     if (*iflag == 0) {
15472 
15473 /* Print X, Y, and Z. */
15474 
15475 /*        WRITE (LUN,101) */
15476         nl = 6;
15477         i__1 = *n;
15478         for (i__ = 1; i__ <= i__1; ++i__) {
15479             if (nl >= nlmax) {
15480 /*            WRITE (LUN,108) */
15481                 nl = 0;
15482             }
15483 /*          WRITE (LUN,103) I, X(I), Y(I), Z(I) */
15484             ++nl;
15485 /* L1: */
15486         }
15487     } else if (*iflag > 0) {
15488 
15489 /* Print X (longitude) and Y (latitude). */
15490 
15491 /*        WRITE (LUN,102) */
15492         nl = 6;
15493         i__1 = *n;
15494         for (i__ = 1; i__ <= i__1; ++i__) {
15495             if (nl >= nlmax) {
15496 /*            WRITE (LUN,108) */
15497                 nl = 0;
15498             }
15499 /*          WRITE (LUN,104) I, X(I), Y(I) */
15500             ++nl;
15501 /* L2: */
15502         }
15503     }
15504 
15505 /* Print the triangulation LTRI. */
15506 
15507     if (nl > nlmax / 2) {
15508 /*        WRITE (LUN,108) */
15509         nl = 0;
15510     }
15511     if (*nrow == 6) {
15512 /*        WRITE (LUN,105) */
15513     } else {
15514 /*        WRITE (LUN,106) */
15515     }
15516     nl += 5;
15517     i__1 = *nt;
15518     for (k = 1; k <= i__1; ++k) {
15519         if (nl >= nlmax) {
15520 /*          WRITE (LUN,108) */
15521             nl = 0;
15522         }
15523 /*        WRITE (LUN,107) K, (LTRI(I,K), I = 1,NROW) */
15524         ++nl;
15525 /* L3: */
15526     }
15527 
15528 /* Print NB, NA, and NT (boundary nodes, arcs, and */
15529 /*   triangles). */
15530 
15531     nb = (*n << 1) - *nt - 2;
15532     if (nb < 3) {
15533         nb = 0;
15534         na = *n * 3 - 6;
15535     } else {
15536         na = *nt + *n - 1;
15537     }
15538 /*      WRITE (LUN,109) NB, NA, NT */
15539     return 0;
15540 
15541 /* Print formats: */
15542 
15543 /*  100 FORMAT (///18X,'STRIPACK (TRLIST) Output,  N = ',I4) */
15544 /*  101 FORMAT (//8X,'Node',10X,'X(Node)',10X,'Y(Node)',10X, */
15545 /*     .        'Z(Node)'//) */
15546 /*  102 FORMAT (//16X,'Node',8X,'Longitude',9X,'Latitude'//) */
15547 /*  103 FORMAT (8X,I4,3D17.6) */
15548 /*  104 FORMAT (16X,I4,2D17.6) */
15549 /*  105 FORMAT (//1X,'Triangle',8X,'Vertices',12X,'Neighbors'/ */
15550 /*     .        4X,'KT',7X,'N1',5X,'N2',5X,'N3',4X,'KT1',4X, */
15551 /*     .        'KT2',4X,'KT3'/) */
15552 /*  106 FORMAT (//1X,'Triangle',8X,'Vertices',12X,'Neighbors', */
15553 /*     .        14X,'Arcs'/ */
15554 /*     .        4X,'KT',7X,'N1',5X,'N2',5X,'N3',4X,'KT1',4X, */
15555 /*     .        'KT2',4X,'KT3',4X,'KA1',4X,'KA2',4X,'KA3'/) */
15556 /*  107 FORMAT (2X,I4,2X,6(3X,I4),3(2X,I5)) */
15557 /*  108 FORMAT (///) */
15558 /*  109 FORMAT (/1X,'NB = ',I4,' Boundary Nodes',5X, */
15559 /*     .        'NA = ',I5,' Arcs',5X,'NT = ',I5, */
15560 /*     .        ' Triangles') */
15561 /*  110 FORMAT (//1X,10X,'*** Invalid Parameter:  N =',I5, */
15562 /*     .        ', NROW =',I5,', NT =',I5,' ***') */
15563 } /* trlprt_ */

int trmesh_ ( int *  n,
double *  x,
double *  y,
double *  z__,
int *  list,
int *  lptr,
int *  lend,
int *  lnew,
int *  near__,
int *  next,
double *  dist,
int *  ier 
)

Definition at line 15565 of file util_sparx.cpp.

References abs, addnod_(), left_(), and nn().

15568 {
15569     /* System generated locals */
15570     int i__1, i__2;
15571 
15572     /* Local variables */
15573     static double d__;
15574     static int i__, j, k;
15575     static double d1, d2, d3;
15576     static int i0, lp, nn, lpl;
15577     long int left_(double *, double *, double *, double
15578             *, double *, double *, double *, double *,
15579             double *);
15580     static int nexti;
15581 
15582 
15583 /* *********************************************************** */
15584 
15585 /*                                              From STRIPACK */
15586 /*                                            Robert J. Renka */
15587 /*                                  Dept. of Computer Science */
15588 /*                                       Univ. of North Texas */
15589 /*                                           renka@cs.unt.edu */
15590 /*                                                   03/04/03 */
15591 
15592 /*   This subroutine creates a Delaunay triangulation of a */
15593 /* set of N arbitrarily distributed points, referred to as */
15594 /* nodes, on the surface of the unit sphere.  The Delaunay */
15595 /* triangulation is defined as a set of (spherical) triangles */
15596 /* with the following five properties: */
15597 
15598 /*  1)  The triangle vertices are nodes. */
15599 /*  2)  No triangle contains a node other than its vertices. */
15600 /*  3)  The interiors of the triangles are pairwise disjoint. */
15601 /*  4)  The union of triangles is the convex hull of the set */
15602 /*        of nodes (the smallest convex set that contains */
15603 /*        the nodes).  If the nodes are not contained in a */
15604 /*        single hemisphere, their convex hull is the en- */
15605 /*        tire sphere and there are no boundary nodes. */
15606 /*        Otherwise, there are at least three boundary nodes. */
15607 /*  5)  The interior of the circumcircle of each triangle */
15608 /*        contains no node. */
15609 
15610 /* The first four properties define a triangulation, and the */
15611 /* last property results in a triangulation which is as close */
15612 /* as possible to equiangular in a certain sense and which is */
15613 /* uniquely defined unless four or more nodes lie in a common */
15614 /* plane.  This property makes the triangulation well-suited */
15615 /* for solving closest-point problems and for triangle-based */
15616 /* interpolation. */
15617 
15618 /*   The algorithm has expected time complexity O(N*log(N)) */
15619 /* for most nodal distributions. */
15620 
15621 /*   Spherical coordinates (latitude and longitude) may be */
15622 /* converted to Cartesian coordinates by Subroutine TRANS. */
15623 
15624 /*   The following is a list of the software package modules */
15625 /* which a user may wish to call directly: */
15626 
15627 /*  ADDNOD - Updates the triangulation by appending a new */
15628 /*             node. */
15629 
15630 /*  AREAS  - Returns the area of a spherical triangle. */
15631 
15632 /*  AREAV  - Returns the area of a Voronoi region associated */
15633 /*           with an interior node without requiring that the */
15634 /*           entire Voronoi diagram be computed and stored. */
15635 
15636 /*  BNODES - Returns an array containing the indexes of the */
15637 /*             boundary nodes (if any) in counterclockwise */
15638 /*             order.  Counts of boundary nodes, triangles, */
15639 /*             and arcs are also returned. */
15640 
15641 /*  CIRCLE - Computes the coordinates of a sequence of uni- */
15642 /*           formly spaced points on the unit circle centered */
15643 /*           at (0,0). */
15644 
15645 /*  CIRCUM - Returns the circumcenter of a spherical trian- */
15646 /*             gle. */
15647 
15648 /*  CRLIST - Returns the set of triangle circumcenters */
15649 /*             (Voronoi vertices) and circumradii associated */
15650 /*             with a triangulation. */
15651 
15652 /*  DELARC - Deletes a boundary arc from a triangulation. */
15653 
15654 /*  DELNOD - Updates the triangulation with a nodal deletion. */
15655 
15656 /*  EDGE   - Forces an arbitrary pair of nodes to be connec- */
15657 /*             ted by an arc in the triangulation. */
15658 
15659 /*  GETNP  - Determines the ordered sequence of L closest */
15660 /*             nodes to a given node, along with the associ- */
15661 /*             ated distances. */
15662 
15663 /*  INSIDE - Locates a point relative to a polygon on the */
15664 /*             surface of the sphere. */
15665 
15666 /*  INTRSC - Returns the point of intersection between a */
15667 /*             pair of great circle arcs. */
15668 
15669 /*  JRAND  - Generates a uniformly distributed pseudo-random */
15670 /*             int. */
15671 
15672 /*  LEFT   - Locates a point relative to a great circle. */
15673 
15674 /*  NEARND - Returns the index of the nearest node to an */
15675 /*             arbitrary point, along with its squared */
15676 /*             distance. */
15677 
15678 /*  PROJCT - Applies a perspective-depth projection to a */
15679 /*             point in 3-space. */
15680 
15681 /*  SCOORD - Converts a point from Cartesian coordinates to */
15682 /*             spherical coordinates. */
15683 
15684 /*  STORE  - Forces a value to be stored in main memory so */
15685 /*             that the precision of floating point numbers */
15686 /*             in memory locations rather than registers is */
15687 /*             computed. */
15688 
15689 /*  TRANS  - Transforms spherical coordinates into Cartesian */
15690 /*             coordinates on the unit sphere for input to */
15691 /*             Subroutine TRMESH. */
15692 
15693 /*  TRLIST - Converts the triangulation data structure to a */
15694 /*             triangle list more suitable for use in a fin- */
15695 /*             ite element code. */
15696 
15697 /*  TRLPRT - Prints the triangle list created by Subroutine */
15698 /*             TRLIST. */
15699 
15700 /*  TRMESH - Creates a Delaunay triangulation of a set of */
15701 /*             nodes. */
15702 
15703 /*  TRPLOT - Creates a level-2 Encapsulated Postscript (EPS) */
15704 /*             file containing a triangulation plot. */
15705 
15706 /*  TRPRNT - Prints the triangulation data structure and, */
15707 /*             optionally, the nodal coordinates. */
15708 
15709 /*  VRPLOT - Creates a level-2 Encapsulated Postscript (EPS) */
15710 /*             file containing a Voronoi diagram plot. */
15711 
15712 
15713 /* On input: */
15714 
15715 /*       N = Number of nodes in the triangulation.  N .GE. 3. */
15716 
15717 /*       X,Y,Z = Arrays of length N containing the Cartesian */
15718 /*               coordinates of distinct nodes.  (X(K),Y(K), */
15719 /*               Z(K)) is referred to as node K, and K is re- */
15720 /*               ferred to as a nodal index.  It is required */
15721 /*               that X(K)**2 + Y(K)**2 + Z(K)**2 = 1 for all */
15722 /*               K.  The first three nodes must not be col- */
15723 /*               linear (lie on a common great circle). */
15724 
15725 /* The above parameters are not altered by this routine. */
15726 
15727 /*       LIST,LPTR = Arrays of length at least 6N-12. */
15728 
15729 /*       LEND = Array of length at least N. */
15730 
15731 /*       NEAR,NEXT,DIST = Work space arrays of length at */
15732 /*                        least N.  The space is used to */
15733 /*                        efficiently determine the nearest */
15734 /*                        triangulation node to each un- */
15735 /*                        processed node for use by ADDNOD. */
15736 
15737 /* On output: */
15738 
15739 /*       LIST = Set of nodal indexes which, along with LPTR, */
15740 /*              LEND, and LNEW, define the triangulation as a */
15741 /*              set of N adjacency lists -- counterclockwise- */
15742 /*              ordered sequences of neighboring nodes such */
15743 /*              that the first and last neighbors of a bound- */
15744 /*              ary node are boundary nodes (the first neigh- */
15745 /*              bor of an interior node is arbitrary).  In */
15746 /*              order to distinguish between interior and */
15747 /*              boundary nodes, the last neighbor of each */
15748 /*              boundary node is represented by the negative */
15749 /*              of its index. */
15750 
15751 /*       LPTR = Set of pointers (LIST indexes) in one-to-one */
15752 /*              correspondence with the elements of LIST. */
15753 /*              LIST(LPTR(I)) indexes the node which follows */
15754 /*              LIST(I) in cyclical counterclockwise order */
15755 /*              (the first neighbor follows the last neigh- */
15756 /*              bor). */
15757 
15758 /*       LEND = Set of pointers to adjacency lists.  LEND(K) */
15759 /*              points to the last neighbor of node K for */
15760 /*              K = 1,...,N.  Thus, LIST(LEND(K)) < 0 if and */
15761 /*              only if K is a boundary node. */
15762 
15763 /*       LNEW = Pointer to the first empty location in LIST */
15764 /*              and LPTR (list length plus one).  LIST, LPTR, */
15765 /*              LEND, and LNEW are not altered if IER < 0, */
15766 /*              and are incomplete if IER > 0. */
15767 
15768 /*       NEAR,NEXT,DIST = Garbage. */
15769 
15770 /*       IER = Error indicator: */
15771 /*             IER =  0 if no errors were encountered. */
15772 /*             IER = -1 if N < 3 on input. */
15773 /*             IER = -2 if the first three nodes are */
15774 /*                      collinear. */
15775 /*             IER =  L if nodes L and M coincide for some */
15776 /*                      M > L.  The data structure represents */
15777 /*                      a triangulation of nodes 1 to M-1 in */
15778 /*                      this case. */
15779 
15780 /* Modules required by TRMESH:  ADDNOD, BDYADD, COVSPH, */
15781 /*                                INSERT, INTADD, JRAND, */
15782 /*                                LEFT, LSTPTR, STORE, SWAP, */
15783 /*                                SWPTST, TRFIND */
15784 
15785 /* Intrinsic function called by TRMESH:  ABS */
15786 
15787 /* *********************************************************** */
15788 
15789 
15790 /* Local parameters: */
15791 
15792 /* D =        (Negative cosine of) distance from node K to */
15793 /*              node I */
15794 /* D1,D2,D3 = Distances from node K to nodes 1, 2, and 3, */
15795 /*              respectively */
15796 /* I,J =      Nodal indexes */
15797 /* I0 =       Index of the node preceding I in a sequence of */
15798 /*              unprocessed nodes:  I = NEXT(I0) */
15799 /* K =        Index of node to be added and DO-loop index: */
15800 /*              K > 3 */
15801 /* LP =       LIST index (pointer) of a neighbor of K */
15802 /* LPL =      Pointer to the last neighbor of K */
15803 /* NEXTI =    NEXT(I) */
15804 /* NN =       Local copy of N */
15805 
15806     /* Parameter adjustments */
15807     --dist;
15808     --next;
15809     --near__;
15810     --lend;
15811     --z__;
15812     --y;
15813     --x;
15814     --list;
15815     --lptr;
15816 
15817     /* Function Body */
15818     nn = *n;
15819     if (nn < 3) {
15820         *ier = -1;
15821         return 0;
15822     }
15823 
15824 /* Store the first triangle in the linked list. */
15825 
15826     if (! left_(&x[1], &y[1], &z__[1], &x[2], &y[2], &z__[2], &x[3], &y[3], &
15827             z__[3])) {
15828 
15829 /*   The first triangle is (3,2,1) = (2,1,3) = (1,3,2). */
15830 
15831         list[1] = 3;
15832         lptr[1] = 2;
15833         list[2] = -2;
15834         lptr[2] = 1;
15835         lend[1] = 2;
15836 
15837         list[3] = 1;
15838         lptr[3] = 4;
15839         list[4] = -3;
15840         lptr[4] = 3;
15841         lend[2] = 4;
15842 
15843         list[5] = 2;
15844         lptr[5] = 6;
15845         list[6] = -1;
15846         lptr[6] = 5;
15847         lend[3] = 6;
15848 
15849     } else if (! left_(&x[2], &y[2], &z__[2], &x[1], &y[1], &z__[1], &x[3], &
15850             y[3], &z__[3])) {
15851 
15852 /*   The first triangle is (1,2,3):  3 Strictly Left 1->2, */
15853 /*     i.e., node 3 lies in the left hemisphere defined by */
15854 /*     arc 1->2. */
15855 
15856         list[1] = 2;
15857         lptr[1] = 2;
15858         list[2] = -3;
15859         lptr[2] = 1;
15860         lend[1] = 2;
15861 
15862         list[3] = 3;
15863         lptr[3] = 4;
15864         list[4] = -1;
15865         lptr[4] = 3;
15866         lend[2] = 4;
15867 
15868         list[5] = 1;
15869         lptr[5] = 6;
15870         list[6] = -2;
15871         lptr[6] = 5;
15872         lend[3] = 6;
15873 
15874     } else {
15875 
15876 /*   The first three nodes are collinear. */
15877 
15878         *ier = -2;
15879         return 0;
15880     }
15881 
15882 /* Initialize LNEW and test for N = 3. */
15883 
15884     *lnew = 7;
15885     if (nn == 3) {
15886         *ier = 0;
15887         return 0;
15888     }
15889 
15890 /* A nearest-node data structure (NEAR, NEXT, and DIST) is */
15891 /*   used to obtain an expected-time (N*log(N)) incremental */
15892 /*   algorithm by enabling constant search time for locating */
15893 /*   each new node in the triangulation. */
15894 
15895 /* For each unprocessed node K, NEAR(K) is the index of the */
15896 /*   triangulation node closest to K (used as the starting */
15897 /*   point for the search in Subroutine TRFIND) and DIST(K) */
15898 /*   is an increasing function of the arc length (angular */
15899 /*   distance) between nodes K and NEAR(K):  -Cos(a) for arc */
15900 /*   length a. */
15901 
15902 /* Since it is necessary to efficiently find the subset of */
15903 /*   unprocessed nodes associated with each triangulation */
15904 /*   node J (those that have J as their NEAR entries), the */
15905 /*   subsets are stored in NEAR and NEXT as follows:  for */
15906 /*   each node J in the triangulation, I = NEAR(J) is the */
15907 /*   first unprocessed node in J's set (with I = 0 if the */
15908 /*   set is empty), L = NEXT(I) (if I > 0) is the second, */
15909 /*   NEXT(L) (if L > 0) is the third, etc.  The nodes in each */
15910 /*   set are initially ordered by increasing indexes (which */
15911 /*   maximizes efficiency) but that ordering is not main- */
15912 /*   tained as the data structure is updated. */
15913 
15914 /* Initialize the data structure for the single triangle. */
15915 
15916     near__[1] = 0;
15917     near__[2] = 0;
15918     near__[3] = 0;
15919     for (k = nn; k >= 4; --k) {
15920         d1 = -(x[k] * x[1] + y[k] * y[1] + z__[k] * z__[1]);
15921         d2 = -(x[k] * x[2] + y[k] * y[2] + z__[k] * z__[2]);
15922         d3 = -(x[k] * x[3] + y[k] * y[3] + z__[k] * z__[3]);
15923         if (d1 <= d2 && d1 <= d3) {
15924             near__[k] = 1;
15925             dist[k] = d1;
15926             next[k] = near__[1];
15927             near__[1] = k;
15928         } else if (d2 <= d1 && d2 <= d3) {
15929             near__[k] = 2;
15930             dist[k] = d2;
15931             next[k] = near__[2];
15932             near__[2] = k;
15933         } else {
15934             near__[k] = 3;
15935             dist[k] = d3;
15936             next[k] = near__[3];
15937             near__[3] = k;
15938         }
15939 /* L1: */
15940     }
15941 
15942 /* Add the remaining nodes */
15943 
15944     i__1 = nn;
15945     for (k = 4; k <= i__1; ++k) {
15946         addnod_(&near__[k], &k, &x[1], &y[1], &z__[1], &list[1], &lptr[1], &
15947                 lend[1], lnew, ier);
15948         if (*ier != 0) {
15949             return 0;
15950         }
15951 
15952 /* Remove K from the set of unprocessed nodes associated */
15953 /*   with NEAR(K). */
15954 
15955         i__ = near__[k];
15956         if (near__[i__] == k) {
15957             near__[i__] = next[k];
15958         } else {
15959             i__ = near__[i__];
15960 L2:
15961             i0 = i__;
15962             i__ = next[i0];
15963             if (i__ != k) {
15964                 goto L2;
15965             }
15966             next[i0] = next[k];
15967         }
15968         near__[k] = 0;
15969 
15970 /* Loop on neighbors J of node K. */
15971 
15972         lpl = lend[k];
15973         lp = lpl;
15974 L3:
15975         lp = lptr[lp];
15976         j = (i__2 = list[lp], abs(i__2));
15977 
15978 /* Loop on elements I in the sequence of unprocessed nodes */
15979 /*   associated with J:  K is a candidate for replacing J */
15980 /*   as the nearest triangulation node to I.  The next value */
15981 /*   of I in the sequence, NEXT(I), must be saved before I */
15982 /*   is moved because it is altered by adding I to K's set. */
15983 
15984         i__ = near__[j];
15985 L4:
15986         if (i__ == 0) {
15987             goto L5;
15988         }
15989         nexti = next[i__];
15990 
15991 /* Test for the distance from I to K less than the distance */
15992 /*   from I to J. */
15993 
15994         d__ = -(x[i__] * x[k] + y[i__] * y[k] + z__[i__] * z__[k]);
15995         if (d__ < dist[i__]) {
15996 
15997 /* Replace J by K as the nearest triangulation node to I: */
15998 /*   update NEAR(I) and DIST(I), and remove I from J's set */
15999 /*   of unprocessed nodes and add it to K's set. */
16000 
16001             near__[i__] = k;
16002             dist[i__] = d__;
16003             if (i__ == near__[j]) {
16004                 near__[j] = nexti;
16005             } else {
16006                 next[i0] = nexti;
16007             }
16008             next[i__] = near__[k];
16009             near__[k] = i__;
16010         } else {
16011             i0 = i__;
16012         }
16013 
16014 /* Bottom of loop on I. */
16015 
16016         i__ = nexti;
16017         goto L4;
16018 
16019 /* Bottom of loop on neighbors J. */
16020 
16021 L5:
16022         if (lp != lpl) {
16023             goto L3;
16024         }
16025 /* L6: */
16026     }
16027     return 0;
16028 } /* trmesh_ */

int trplot_ ( int *  lun,
double *  pltsiz,
double *  elat,
double *  elon,
double *  a,
int *  n,
double *  x,
double *  y,
double *  z__,
int *  list,
int *  lptr,
int *  lend,
char *  ,
long int *  numbr,
int *  ier,
short   
)

Definition at line 16030 of file util_sparx.cpp.

References abs, drwarc_(), i_dnnt(), sqrt(), t, TRUE_, and wr.

16034 {
16035     /* Initialized data */
16036 
16037     static long int annot = TRUE_;
16038     static double fsizn = 10.;
16039     static double fsizt = 16.;
16040     static double tol = .5;
16041 
16042     /* System generated locals */
16043     int i__1, i__2;
16044     double d__1;
16045 
16046     /* Builtin functions */
16047     //double atan(double), sin(double);
16048     //int i_dnnt(double *);
16049     //double cos(double), sqrt(double);
16050 
16051     /* Local variables */
16052     static double t;
16053     static int n0, n1;
16054     static double p0[3], p1[3], cf, r11, r12, r21, ct, r22, r23, sf;
16055     static int ir, lp;
16056     static double ex, ey, ez, wr, tx, ty;
16057     static int lpl;
16058     static double wrs;
16059     static int ipx1, ipx2, ipy1, ipy2, nseg;
16060     /* Subroutine */ int drwarc_(int *, double *, double *,
16061              double *, int *);
16062 
16063 
16064 /* *********************************************************** */
16065 
16066 /*                                              From STRIPACK */
16067 /*                                            Robert J. Renka */
16068 /*                                  Dept. of Computer Science */
16069 /*                                       Univ. of North Texas */
16070 /*                                           renka@cs.unt.edu */
16071 /*                                                   03/04/03 */
16072 
16073 /*   This subroutine creates a level-2 Encapsulated Post- */
16074 /* script (EPS) file containing a graphical display of a */
16075 /* triangulation of a set of nodes on the surface of the unit */
16076 /* sphere.  The visible portion of the triangulation is */
16077 /* projected onto the plane that contains the origin and has */
16078 /* normal defined by a user-specified eye-position. */
16079 
16080 
16081 /* On input: */
16082 
16083 /*       LUN = long int unit number in the range 0 to 99. */
16084 /*             The unit should be opened with an appropriate */
16085 /*             file name before the call to this routine. */
16086 
16087 /*       PLTSIZ = Plot size in inches.  A circular window in */
16088 /*                the projection plane is mapped to a circu- */
16089 /*                lar viewport with diameter equal to .88* */
16090 /*                PLTSIZ (leaving room for labels outside the */
16091 /*                viewport).  The viewport is centered on the */
16092 /*                8.5 by 11 inch page, and its boundary is */
16093 /*                drawn.  1.0 .LE. PLTSIZ .LE. 8.5. */
16094 
16095 /*       ELAT,ELON = Latitude and longitude (in degrees) of */
16096 /*                   the center of projection E (the center */
16097 /*                   of the plot).  The projection plane is */
16098 /*                   the plane that contains the origin and */
16099 /*                   has E as unit normal.  In a rotated */
16100 /*                   coordinate system for which E is the */
16101 /*                   north pole, the projection plane con- */
16102 /*                   tains the equator, and only northern */
16103 /*                   hemisphere nodes are visible (from the */
16104 /*                   point at infinity in the direction E). */
16105 /*                   These are projected orthogonally onto */
16106 /*                   the projection plane (by zeroing the z- */
16107 /*                   component in the rotated coordinate */
16108 /*                   system).  ELAT and ELON must be in the */
16109 /*                   range -90 to 90 and -180 to 180, respec- */
16110 /*                   tively. */
16111 
16112 /*       A = Angular distance in degrees from E to the boun- */
16113 /*           dary of a circular window against which the */
16114 /*           triangulation is clipped.  The projected window */
16115 /*           is a disk of radius r = Sin(A) centered at the */
16116 /*           origin, and only visible nodes whose projections */
16117 /*           are within distance r of the origin are included */
16118 /*           in the plot.  Thus, if A = 90, the plot includes */
16119 /*           the entire hemisphere centered at E.  0 .LT. A */
16120 /*           .LE. 90. */
16121 
16122 /*       N = Number of nodes in the triangulation.  N .GE. 3. */
16123 
16124 /*       X,Y,Z = Arrays of length N containing the Cartesian */
16125 /*               coordinates of the nodes (unit vectors). */
16126 
16127 /*       LIST,LPTR,LEND = Data structure defining the trian- */
16128 /*                        gulation.  Refer to Subroutine */
16129 /*                        TRMESH. */
16130 
16131 /*       TITLE = Type CHARACTER variable or constant contain- */
16132 /*               ing a string to be centered above the plot. */
16133 /*               The string must be enclosed in parentheses; */
16134 /*               i.e., the first and last characters must be */
16135 /*               '(' and ')', respectively, but these are not */
16136 /*               displayed.  TITLE may have at most 80 char- */
16137 /*               acters including the parentheses. */
16138 
16139 /*       NUMBR = Option indicator:  If NUMBR = TRUE, the */
16140 /*               nodal indexes are plotted next to the nodes. */
16141 
16142 /* Input parameters are not altered by this routine. */
16143 
16144 /* On output: */
16145 
16146 /*       IER = Error indicator: */
16147 /*             IER = 0 if no errors were encountered. */
16148 /*             IER = 1 if LUN, PLTSIZ, or N is outside its */
16149 /*                     valid range. */
16150 /*             IER = 2 if ELAT, ELON, or A is outside its */
16151 /*                     valid range. */
16152 /*             IER = 3 if an error was encountered in writing */
16153 /*                     to unit LUN. */
16154 
16155 /*   The values in the data statement below may be altered */
16156 /* in order to modify various plotting options. */
16157 
16158 /* Module required by TRPLOT:  DRWARC */
16159 
16160 /* Intrinsic functions called by TRPLOT:  ABS, ATAN, COS, */
16161 /*                                          DBLE, NINT, SIN, */
16162 /*                                          SQRT */
16163 
16164 /* *********************************************************** */
16165 
16166 
16167     /* Parameter adjustments */
16168     --lend;
16169     --z__;
16170     --y;
16171     --x;
16172     --list;
16173     --lptr;
16174 
16175     /* Function Body */
16176 
16177 /* Local parameters: */
16178 
16179 /* ANNOT =     long int variable with value TRUE iff the plot */
16180 /*               is to be annotated with the values of ELAT, */
16181 /*               ELON, and A */
16182 /* CF =        Conversion factor for degrees to radians */
16183 /* CT =        Cos(ELAT) */
16184 /* EX,EY,EZ =  Cartesian coordinates of the eye-position E */
16185 /* FSIZN =     Font size in points for labeling nodes with */
16186 /*               their indexes if NUMBR = TRUE */
16187 /* FSIZT =     Font size in points for the title (and */
16188 /*               annotation if ANNOT = TRUE) */
16189 /* IPX1,IPY1 = X and y coordinates (in points) of the lower */
16190 /*               left corner of the bounding box or viewport */
16191 /*               box */
16192 /* IPX2,IPY2 = X and y coordinates (in points) of the upper */
16193 /*               right corner of the bounding box or viewport */
16194 /*               box */
16195 /* IR =        Half the width (height) of the bounding box or */
16196 /*               viewport box in points -- viewport radius */
16197 /* LP =        LIST index (pointer) */
16198 /* LPL =       Pointer to the last neighbor of N0 */
16199 /* N0 =        Index of a node whose incident arcs are to be */
16200 /*               drawn */
16201 /* N1 =        Neighbor of N0 */
16202 /* NSEG =      Number of line segments used by DRWARC in a */
16203 /*               polygonal approximation to a projected edge */
16204 /* P0 =        Coordinates of N0 in the rotated coordinate */
16205 /*               system or label location (first two */
16206 /*               components) */
16207 /* P1 =        Coordinates of N1 in the rotated coordinate */
16208 /*               system or intersection of edge N0-N1 with */
16209 /*               the equator (in the rotated coordinate */
16210 /*               system) */
16211 /* R11...R23 = Components of the first two rows of a rotation */
16212 /*               that maps E to the north pole (0,0,1) */
16213 /* SF =        Scale factor for mapping world coordinates */
16214 /*               (window coordinates in [-WR,WR] X [-WR,WR]) */
16215 /*               to viewport coordinates in [IPX1,IPX2] X */
16216 /*               [IPY1,IPY2] */
16217 /* T =         Temporary variable */
16218 /* TOL =       Maximum distance in points between a projected */
16219 /*               triangulation edge and its approximation by */
16220 /*               a polygonal curve */
16221 /* TX,TY =     Translation vector for mapping world coordi- */
16222 /*               nates to viewport coordinates */
16223 /* WR =        Window radius r = Sin(A) */
16224 /* WRS =       WR**2 */
16225 
16226 
16227 /* Test for invalid parameters. */
16228 
16229     if (*lun < 0 || *lun > 99 || *pltsiz < 1. || *pltsiz > 8.5 || *n < 3) {
16230         goto L11;
16231     }
16232     if (abs(*elat) > 90. || abs(*elon) > 180. || *a > 90.) {
16233         goto L12;
16234     }
16235 
16236 /* Compute a conversion factor CF for degrees to radians */
16237 /*   and compute the window radius WR. */
16238 
16239     cf = atan(1.) / 45.;
16240     wr = sin(cf * *a);
16241     wrs = wr * wr;
16242 
16243 /* Compute the lower left (IPX1,IPY1) and upper right */
16244 /*   (IPX2,IPY2) corner coordinates of the bounding box. */
16245 /*   The coordinates, specified in default user space units */
16246 /*   (points, at 72 points/inch with origin at the lower */
16247 /*   left corner of the page), are chosen to preserve the */
16248 /*   square aspect ratio, and to center the plot on the 8.5 */
16249 /*   by 11 inch page.  The center of the page is (306,396), */
16250 /*   and IR = PLTSIZ/2 in points. */
16251 
16252     d__1 = *pltsiz * 36.;
16253     ir = i_dnnt(&d__1);
16254     ipx1 = 306 - ir;
16255     ipx2 = ir + 306;
16256     ipy1 = 396 - ir;
16257     ipy2 = ir + 396;
16258 
16259 /* Output header comments. */
16260 
16261 /*      WRITE (LUN,100,ERR=13) IPX1, IPY1, IPX2, IPY2 */
16262 /*  100 FORMAT ('%!PS-Adobe-3.0 EPSF-3.0'/ */
16263 /*     .        '%%BoundingBox:',4I4/ */
16264 /*     .        '%%Title:  Triangulation'/ */
16265 /*     .        '%%Creator:  STRIPACK'/ */
16266 /*     .        '%%EndComments') */
16267 
16268 /* Set (IPX1,IPY1) and (IPX2,IPY2) to the corner coordinates */
16269 /*   of a viewport box obtained by shrinking the bounding box */
16270 /*   by 12% in each dimension. */
16271 
16272     d__1 = (double) ir * .88;
16273     ir = i_dnnt(&d__1);
16274     ipx1 = 306 - ir;
16275     ipx2 = ir + 306;
16276     ipy1 = 396 - ir;
16277     ipy2 = ir + 396;
16278 
16279 /* Set the line thickness to 2 points, and draw the */
16280 /*   viewport boundary. */
16281 
16282     t = 2.;
16283 /*      WRITE (LUN,110,ERR=13) T */
16284 /*      WRITE (LUN,120,ERR=13) IR */
16285 /*      WRITE (LUN,130,ERR=13) */
16286 /*  110 FORMAT (F12.6,' setlinewidth') */
16287 /*  120 FORMAT ('306 396 ',I3,' 0 360 arc') */
16288 /*  130 FORMAT ('stroke') */
16289 
16290 /* Set up an affine mapping from the window box [-WR,WR] X */
16291 /*   [-WR,WR] to the viewport box. */
16292 
16293     sf = (double) ir / wr;
16294     tx = ipx1 + sf * wr;
16295     ty = ipy1 + sf * wr;
16296 /*      WRITE (LUN,140,ERR=13) TX, TY, SF, SF */
16297 /*  140 FORMAT (2F12.6,' translate'/ */
16298 /*    .        2F12.6,' scale') */
16299 
16300 /* The line thickness must be changed to reflect the new */
16301 /*   scaling which is applied to all subsequent output. */
16302 /*   Set it to 1.0 point. */
16303 
16304     t = 1. / sf;
16305 /*      WRITE (LUN,110,ERR=13) T */
16306 
16307 /* Save the current graphics state, and set the clip path to */
16308 /*   the boundary of the window. */
16309 
16310 /*      WRITE (LUN,150,ERR=13) */
16311 /*      WRITE (LUN,160,ERR=13) WR */
16312 /*      WRITE (LUN,170,ERR=13) */
16313 /*  150 FORMAT ('gsave') */
16314 /*  160 FORMAT ('0 0 ',F12.6,' 0 360 arc') */
16315 /*  170 FORMAT ('clip newpath') */
16316 
16317 /* Compute the Cartesian coordinates of E and the components */
16318 /*   of a rotation R which maps E to the north pole (0,0,1). */
16319 /*   R is taken to be a rotation about the z-axis (into the */
16320 /*   yz-plane) followed by a rotation about the x-axis chosen */
16321 /*   so that the view-up direction is (0,0,1), or (-1,0,0) if */
16322 /*   E is the north or south pole. */
16323 
16324 /*           ( R11  R12  0   ) */
16325 /*       R = ( R21  R22  R23 ) */
16326 /*           ( EX   EY   EZ  ) */
16327 
16328     t = cf * *elon;
16329     ct = cos(cf * *elat);
16330     ex = ct * cos(t);
16331     ey = ct * sin(t);
16332     ez = sin(cf * *elat);
16333     if (ct != 0.) {
16334         r11 = -ey / ct;
16335         r12 = ex / ct;
16336     } else {
16337         r11 = 0.;
16338         r12 = 1.;
16339     }
16340     r21 = -ez * r12;
16341     r22 = ez * r11;
16342     r23 = ct;
16343 
16344 /* Loop on visible nodes N0 that project to points */
16345 /*   (P0(1),P0(2)) in the window. */
16346 
16347     i__1 = *n;
16348     for (n0 = 1; n0 <= i__1; ++n0) {
16349         p0[2] = ex * x[n0] + ey * y[n0] + ez * z__[n0];
16350         if (p0[2] < 0.) {
16351             goto L3;
16352         }
16353         p0[0] = r11 * x[n0] + r12 * y[n0];
16354         p0[1] = r21 * x[n0] + r22 * y[n0] + r23 * z__[n0];
16355         if (p0[0] * p0[0] + p0[1] * p0[1] > wrs) {
16356             goto L3;
16357         }
16358         lpl = lend[n0];
16359         lp = lpl;
16360 
16361 /* Loop on neighbors N1 of N0.  LPL points to the last */
16362 /*   neighbor of N0.  Copy the components of N1 into P. */
16363 
16364 L1:
16365         lp = lptr[lp];
16366         n1 = (i__2 = list[lp], abs(i__2));
16367         p1[0] = r11 * x[n1] + r12 * y[n1];
16368         p1[1] = r21 * x[n1] + r22 * y[n1] + r23 * z__[n1];
16369         p1[2] = ex * x[n1] + ey * y[n1] + ez * z__[n1];
16370         if (p1[2] < 0.) {
16371 
16372 /*   N1 is a 'southern hemisphere' point.  Move it to the */
16373 /*     intersection of edge N0-N1 with the equator so that */
16374 /*     the edge is clipped properly.  P1(3) is set to 0. */
16375 
16376             p1[0] = p0[2] * p1[0] - p1[2] * p0[0];
16377             p1[1] = p0[2] * p1[1] - p1[2] * p0[1];
16378             t = sqrt(p1[0] * p1[0] + p1[1] * p1[1]);
16379             p1[0] /= t;
16380             p1[1] /= t;
16381         }
16382 
16383 /*   If node N1 is in the window and N1 < N0, bypass edge */
16384 /*     N0->N1 (since edge N1->N0 has already been drawn). */
16385 
16386         if (p1[2] >= 0. && p1[0] * p1[0] + p1[1] * p1[1] <= wrs && n1 < n0) {
16387             goto L2;
16388         }
16389 
16390 /*   Add the edge to the path.  (TOL is converted to world */
16391 /*     coordinates.) */
16392 
16393         if (p1[2] < 0.) {
16394             p1[2] = 0.;
16395         }
16396         d__1 = tol / sf;
16397         drwarc_(lun, p0, p1, &d__1, &nseg);
16398 
16399 /* Bottom of loops. */
16400 
16401 L2:
16402         if (lp != lpl) {
16403             goto L1;
16404         }
16405 L3:
16406         ;
16407     }
16408 
16409 /* Paint the path and restore the saved graphics state (with */
16410 /*   no clip path). */
16411 
16412 /*      WRITE (LUN,130,ERR=13) */
16413 /*      WRITE (LUN,190,ERR=13) */
16414 /*  190 FORMAT ('grestore') */
16415     if (*numbr) {
16416 
16417 /* Nodes in the window are to be labeled with their indexes. */
16418 /*   Convert FSIZN from points to world coordinates, and */
16419 /*   output the commands to select a font and scale it. */
16420 
16421         t = fsizn / sf;
16422 /*        WRITE (LUN,200,ERR=13) T */
16423 /*  200   FORMAT ('/Helvetica findfont'/ */
16424 /*     .          F12.6,' scalefont setfont') */
16425 
16426 /* Loop on visible nodes N0 that project to points */
16427 /*   P0 = (P0(1),P0(2)) in the window. */
16428 
16429         i__1 = *n;
16430         for (n0 = 1; n0 <= i__1; ++n0) {
16431             if (ex * x[n0] + ey * y[n0] + ez * z__[n0] < 0.) {
16432                 goto L4;
16433             }
16434             p0[0] = r11 * x[n0] + r12 * y[n0];
16435             p0[1] = r21 * x[n0] + r22 * y[n0] + r23 * z__[n0];
16436             if (p0[0] * p0[0] + p0[1] * p0[1] > wrs) {
16437                 goto L4;
16438             }
16439 
16440 /*   Move to P0 and draw the label N0.  The first character */
16441 /*     will will have its lower left corner about one */
16442 /*     character width to the right of the nodal position. */
16443 
16444 /*          WRITE (LUN,210,ERR=13) P0(1), P0(2) */
16445 /*          WRITE (LUN,220,ERR=13) N0 */
16446 /*  210     FORMAT (2F12.6,' moveto') */
16447 /*  220     FORMAT ('(',I3,') show') */
16448 L4:
16449             ;
16450         }
16451     }
16452 
16453 /* Convert FSIZT from points to world coordinates, and output */
16454 /*   the commands to select a font and scale it. */
16455 
16456     t = fsizt / sf;
16457 /*      WRITE (LUN,200,ERR=13) T */
16458 
16459 /* Display TITLE centered above the plot: */
16460 
16461     p0[1] = wr + t * 3.;
16462 /*      WRITE (LUN,230,ERR=13) TITLE, P0(2) */
16463 /*  230 FORMAT (A80/'  stringwidth pop 2 div neg ',F12.6, */
16464 /*     .        ' moveto') */
16465 /*      WRITE (LUN,240,ERR=13) TITLE */
16466 /*  240 FORMAT (A80/'  show') */
16467     if (annot) {
16468 
16469 /* Display the window center and radius below the plot. */
16470 
16471         p0[0] = -wr;
16472         p0[1] = -wr - 50. / sf;
16473 /*        WRITE (LUN,210,ERR=13) P0(1), P0(2) */
16474 /*        WRITE (LUN,250,ERR=13) ELAT, ELON */
16475         p0[1] -= t * 2.;
16476 /*        WRITE (LUN,210,ERR=13) P0(1), P0(2) */
16477 /*        WRITE (LUN,260,ERR=13) A */
16478 /*  250   FORMAT ('(Window center:  ELAT = ',F7.2, */
16479 /*     .          ',  ELON = ',F8.2,') show') */
16480 /*  260   FORMAT ('(Angular extent:  A = ',F5.2,') show') */
16481     }
16482 
16483 /* Paint the path and output the showpage command and */
16484 /*   end-of-file indicator. */
16485 
16486 /*      WRITE (LUN,270,ERR=13) */
16487 /*  270 FORMAT ('stroke'/ */
16488 /*     .        'showpage'/ */
16489 /*     .        '%%EOF') */
16490 
16491 /* HP's interpreters require a one-byte End-of-PostScript-Job */
16492 /*   indicator (to eliminate a timeout error message): */
16493 /*   ASCII 4. */
16494 
16495 /*      WRITE (LUN,280,ERR=13) CHAR(4) */
16496 /*  280 FORMAT (A1) */
16497 
16498 /* No error encountered. */
16499 
16500     *ier = 0;
16501     return 0;
16502 
16503 /* Invalid input parameter LUN, PLTSIZ, or N. */
16504 
16505 L11:
16506     *ier = 1;
16507     return 0;
16508 
16509 /* Invalid input parameter ELAT, ELON, or A. */
16510 
16511 L12:
16512     *ier = 2;
16513     return 0;
16514 
16515 /* Error writing to unit LUN. */
16516 
16517 /* L13: */
16518     *ier = 3;
16519     return 0;
16520 } /* trplot_ */

int trprnt_ ( int *  n,
double *  x,
double *  y,
double *  z__,
int *  iflag,
int *  list,
int *  lptr,
int *  lend,
int *  lout 
)

Definition at line 16522 of file util_sparx.cpp.

References nn().

16525 {
16526     /* Initialized data */
16527 
16528     static int nmax = 9999;
16529     static int nlmax = 58;
16530 
16531     /* System generated locals */
16532     int i__1;
16533 
16534     /* Local variables */
16535     static int k, na, nb, nd, nl, lp, nn, nt, inc, lpl, lun, node, nabor[
16536             400];
16537 
16538 
16539 /* *********************************************************** */
16540 
16541 /*                                              From STRIPACK */
16542 /*                                            Robert J. Renka */
16543 /*                                  Dept. of Computer Science */
16544 /*                                       Univ. of North Texas */
16545 /*                                           renka@cs.unt.edu */
16546 /*                                                   07/25/98 */
16547 
16548 /*   This subroutine prints the triangulation adjacency lists */
16549 /* created by Subroutine TRMESH and, optionally, the nodal */
16550 /* coordinates (either latitude and longitude or Cartesian */
16551 /* coordinates) on long int unit LOUT.  The list of neighbors */
16552 /* of a boundary node is followed by index 0.  The numbers of */
16553 /* boundary nodes, triangles, and arcs are also printed. */
16554 
16555 
16556 /* On input: */
16557 
16558 /*       N = Number of nodes in the triangulation.  N .GE. 3 */
16559 /*           and N .LE. 9999. */
16560 
16561 /*       X,Y,Z = Arrays of length N containing the Cartesian */
16562 /*               coordinates of the nodes if IFLAG = 0, or */
16563 /*               (X and Y only) arrays of length N containing */
16564 /*               longitude and latitude, respectively, if */
16565 /*               IFLAG > 0, or unused dummy parameters if */
16566 /*               IFLAG < 0. */
16567 
16568 /*       IFLAG = Nodal coordinate option indicator: */
16569 /*               IFLAG = 0 if X, Y, and Z (assumed to contain */
16570 /*                         Cartesian coordinates) are to be */
16571 /*                         printed (to 6 decimal places). */
16572 /*               IFLAG > 0 if only X and Y (assumed to con- */
16573 /*                         tain longitude and latitude) are */
16574 /*                         to be printed (to 6 decimal */
16575 /*                         places). */
16576 /*               IFLAG < 0 if only the adjacency lists are to */
16577 /*                         be printed. */
16578 
16579 /*       LIST,LPTR,LEND = Data structure defining the trian- */
16580 /*                        gulation.  Refer to Subroutine */
16581 /*                        TRMESH. */
16582 
16583 /*       LOUT = long int unit for output.  If LOUT is not in */
16584 /*              the range 0 to 99, output is written to */
16585 /*              long int unit 6. */
16586 
16587 /* Input parameters are not altered by this routine. */
16588 
16589 /* On output: */
16590 
16591 /*   The adjacency lists and nodal coordinates (as specified */
16592 /* by IFLAG) are written to unit LOUT. */
16593 
16594 /* Modules required by TRPRNT:  None */
16595 
16596 /* *********************************************************** */
16597 
16598     /* Parameter adjustments */
16599     --lend;
16600     --z__;
16601     --y;
16602     --x;
16603     --list;
16604     --lptr;
16605 
16606     /* Function Body */
16607 
16608 /* Local parameters: */
16609 
16610 /* I =     NABOR index (1 to K) */
16611 /* INC =   Increment for NL associated with an adjacency list */
16612 /* K =     Counter and number of neighbors of NODE */
16613 /* LP =    LIST pointer of a neighbor of NODE */
16614 /* LPL =   Pointer to the last neighbor of NODE */
16615 /* LUN =   long int unit for output (copy of LOUT) */
16616 /* NA =    Number of arcs in the triangulation */
16617 /* NABOR = Array containing the adjacency list associated */
16618 /*           with NODE, with zero appended if NODE is a */
16619 /*           boundary node */
16620 /* NB =    Number of boundary nodes encountered */
16621 /* ND =    Index of a neighbor of NODE (or negative index) */
16622 /* NL =    Number of lines that have been printed on the */
16623 /*           current page */
16624 /* NLMAX = Maximum number of print lines per page (except */
16625 /*           for the last page which may have two addi- */
16626 /*           tional lines) */
16627 /* NMAX =  Upper bound on N (allows 4-digit indexes) */
16628 /* NODE =  Index of a node and DO-loop index (1 to N) */
16629 /* NN =    Local copy of N */
16630 /* NT =    Number of triangles in the triangulation */
16631 
16632     nn = *n;
16633     lun = *lout;
16634     if (lun < 0 || lun > 99) {
16635         lun = 6;
16636     }
16637 
16638 /* Print a heading and test the range of N. */
16639 
16640 /*      WRITE (LUN,100) NN */
16641     if (nn < 3 || nn > nmax) {
16642 
16643 /* N is outside its valid range. */
16644 
16645 /*        WRITE (LUN,110) */
16646         return 0;
16647     }
16648 
16649 /* Initialize NL (the number of lines printed on the current */
16650 /*   page) and NB (the number of boundary nodes encountered). */
16651 
16652     nl = 6;
16653     nb = 0;
16654     if (*iflag < 0) {
16655 
16656 /* Print LIST only.  K is the number of neighbors of NODE */
16657 /*   that have been stored in NABOR. */
16658 
16659 /*        WRITE (LUN,101) */
16660         i__1 = nn;
16661         for (node = 1; node <= i__1; ++node) {
16662             lpl = lend[node];
16663             lp = lpl;
16664             k = 0;
16665 
16666 L1:
16667             ++k;
16668             lp = lptr[lp];
16669             nd = list[lp];
16670             nabor[k - 1] = nd;
16671             if (lp != lpl) {
16672                 goto L1;
16673             }
16674             if (nd <= 0) {
16675 
16676 /*   NODE is a boundary node.  Correct the sign of the last */
16677 /*     neighbor, add 0 to the end of the list, and increment */
16678 /*     NB. */
16679 
16680                 nabor[k - 1] = -nd;
16681                 ++k;
16682                 nabor[k - 1] = 0;
16683                 ++nb;
16684             }
16685 
16686 /*   Increment NL and print the list of neighbors. */
16687 
16688             inc = (k - 1) / 14 + 2;
16689             nl += inc;
16690             if (nl > nlmax) {
16691 /*            WRITE (LUN,108) */
16692                 nl = inc;
16693             }
16694 /*          WRITE (LUN,104) NODE, (NABOR(I), I = 1,K) */
16695 /*          IF (K .NE. 14) */
16696 /*           WRITE (LUN,107) */
16697 /* L2: */
16698         }
16699     } else if (*iflag > 0) {
16700 
16701 /* Print X (longitude), Y (latitude), and LIST. */
16702 
16703 /*        WRITE (LUN,102) */
16704         i__1 = nn;
16705         for (node = 1; node <= i__1; ++node) {
16706             lpl = lend[node];
16707             lp = lpl;
16708             k = 0;
16709 
16710 L3:
16711             ++k;
16712             lp = lptr[lp];
16713             nd = list[lp];
16714             nabor[k - 1] = nd;
16715             if (lp != lpl) {
16716                 goto L3;
16717             }
16718             if (nd <= 0) {
16719 
16720 /*   NODE is a boundary node. */
16721 
16722                 nabor[k - 1] = -nd;
16723                 ++k;
16724                 nabor[k - 1] = 0;
16725                 ++nb;
16726             }
16727 
16728 /*   Increment NL and print X, Y, and NABOR. */
16729 
16730             inc = (k - 1) / 8 + 2;
16731             nl += inc;
16732             if (nl > nlmax) {
16733 /*            WRITE (LUN,108) */
16734                 nl = inc;
16735             }
16736 /*          WRITE (LUN,105) NODE, X(NODE), Y(NODE), (NABOR(I), I = 1,K) */
16737 /*          IF (K .NE. 8) */
16738 /*           PRINT *,K */
16739 /*           WRITE (LUN,107) */
16740 /* L4: */
16741         }
16742     } else {
16743 
16744 /* Print X, Y, Z, and LIST. */
16745 
16746 /*        WRITE (LUN,103) */
16747         i__1 = nn;
16748         for (node = 1; node <= i__1; ++node) {
16749             lpl = lend[node];
16750             lp = lpl;
16751             k = 0;
16752 
16753 L5:
16754             ++k;
16755             lp = lptr[lp];
16756             nd = list[lp];
16757             nabor[k - 1] = nd;
16758             if (lp != lpl) {
16759                 goto L5;
16760             }
16761             if (nd <= 0) {
16762 
16763 /*   NODE is a boundary node. */
16764 
16765                 nabor[k - 1] = -nd;
16766                 ++k;
16767                 nabor[k - 1] = 0;
16768                 ++nb;
16769             }
16770 
16771 /*   Increment NL and print X, Y, Z, and NABOR. */
16772 
16773             inc = (k - 1) / 5 + 2;
16774             nl += inc;
16775             if (nl > nlmax) {
16776 /*            WRITE (LUN,108) */
16777                 nl = inc;
16778             }
16779 /*          WRITE (LUN,106) NODE, X(NODE), Y(NODE),Z(NODE), (NABOR(I), I = 1,K) */
16780 /*          IF (K .NE. 5) */
16781 /*           print *,K */
16782 /*           WRITE (LUN,107) */
16783 /* L6: */
16784         }
16785     }
16786 
16787 /* Print NB, NA, and NT (boundary nodes, arcs, and */
16788 /*   triangles). */
16789 
16790     if (nb != 0) {
16791         na = nn * 3 - nb - 3;
16792         nt = (nn << 1) - nb - 2;
16793     } else {
16794         na = nn * 3 - 6;
16795         nt = (nn << 1) - 4;
16796     }
16797 /*      WRITE (LUN,109) NB, NA, NT */
16798     return 0;
16799 
16800 /* Print formats: */
16801 
16802 /*  100 FORMAT (///15X,'STRIPACK Triangulation Data ', */
16803 /*     .        'Structure,  N = ',I5//) */
16804 /*  101 FORMAT (1X,'Node',31X,'Neighbors of Node'//) */
16805 /*  102 FORMAT (1X,'Node',5X,'Longitude',6X,'Latitude', */
16806 /*     .        18X,'Neighbors of Node'//) */
16807 /*  103 FORMAT (1X,'Node',5X,'X(Node)',8X,'Y(Node)',8X, */
16808 /*     .        'Z(Node)',11X,'Neighbors of Node'//) */
16809 /*  104 FORMAT (1X,I4,4X,14I5/(1X,8X,14I5)) */
16810 /*  105 FORMAT (1X,I4,2D15.6,4X,8I5/(1X,38X,8I5)) */
16811 /*  106 FORMAT (1X,I4,3D15.6,4X,5I5/(1X,53X,5I5)) */
16812 /*  107 FORMAT (1X) */
16813 /*  108 FORMAT (///) */
16814 /*  109 FORMAT (/1X,'NB = ',I4,' Boundary Nodes',5X, */
16815 /*     .        'NA = ',I5,' Arcs',5X,'NT = ',I5, */
16816 /*     .        ' Triangles') */
16817 /*  110 FORMAT (1X,10X,'*** N is outside its valid', */
16818 /*     .        ' range ***') */
16819 } /* trprnt_ */

int vrplot_ ( int *  lun,
double *  pltsiz,
double *  elat,
double *  elon,
double *  a,
int *  n,
double *  x,
double *  y,
double *  z__,
int *  nt,
int *  listc,
int *  lptr,
int *  lend,
double *  xc,
double *  yc,
double *  zc,
char *  ,
long int *  numbr,
int *  ier,
short   
)

Definition at line 16821 of file util_sparx.cpp.

References abs, drwarc_(), i_dnnt(), sqrt(), t, TRUE_, and wr.

16826 {
16827     /* Initialized data */
16828 
16829     static long int annot = TRUE_;
16830     static double fsizn = 10.;
16831     static double fsizt = 16.;
16832     static double tol = .5;
16833 
16834     /* System generated locals */
16835     int i__1;
16836     double d__1;
16837 
16838     /* Builtin functions */
16839     //double atan(double), sin(double);
16840     //int i_dnnt(double *);
16841     //double cos(double), sqrt(double);
16842 
16843     /* Local variables */
16844     static double t;
16845     static int n0;
16846     static double p1[3], p2[3], x0, y0, cf, r11, r12, r21, ct, r22, r23,
16847             sf;
16848     static int ir, lp;
16849     static double ex, ey, ez, wr, tx, ty;
16850     static long int in1, in2;
16851     static int kv1, kv2, lpl;
16852     static double wrs;
16853     static int ipx1, ipx2, ipy1, ipy2, nseg;
16854     /* Subroutine */ int drwarc_(int *, double *, double *,
16855              double *, int *);
16856 
16857 
16858 /* *********************************************************** */
16859 
16860 /*                                              From STRIPACK */
16861 /*                                            Robert J. Renka */
16862 /*                                  Dept. of Computer Science */
16863 /*                                       Univ. of North Texas */
16864 /*                                           renka@cs.unt.edu */
16865 /*                                                   03/04/03 */
16866 
16867 /*   This subroutine creates a level-2 Encapsulated Post- */
16868 /* script (EPS) file containing a graphical depiction of a */
16869 /* Voronoi diagram of a set of nodes on the unit sphere. */
16870 /* The visible portion of the diagram is projected orthog- */
16871 /* onally onto the plane that contains the origin and has */
16872 /* normal defined by a user-specified eye-position. */
16873 
16874 /*   The parameters defining the Voronoi diagram may be com- */
16875 /* puted by Subroutine CRLIST. */
16876 
16877 
16878 /* On input: */
16879 
16880 /*       LUN = long int unit number in the range 0 to 99. */
16881 /*             The unit should be opened with an appropriate */
16882 /*             file name before the call to this routine. */
16883 
16884 /*       PLTSIZ = Plot size in inches.  A circular window in */
16885 /*                the projection plane is mapped to a circu- */
16886 /*                lar viewport with diameter equal to .88* */
16887 /*                PLTSIZ (leaving room for labels outside the */
16888 /*                viewport).  The viewport is centered on the */
16889 /*                8.5 by 11 inch page, and its boundary is */
16890 /*                drawn.  1.0 .LE. PLTSIZ .LE. 8.5. */
16891 
16892 /*       ELAT,ELON = Latitude and longitude (in degrees) of */
16893 /*                   the center of projection E (the center */
16894 /*                   of the plot).  The projection plane is */
16895 /*                   the plane that contains the origin and */
16896 /*                   has E as unit normal.  In a rotated */
16897 /*                   coordinate system for which E is the */
16898 /*                   north pole, the projection plane con- */
16899 /*                   tains the equator, and only northern */
16900 /*                   hemisphere points are visible (from the */
16901 /*                   point at infinity in the direction E). */
16902 /*                   These are projected orthogonally onto */
16903 /*                   the projection plane (by zeroing the z- */
16904 /*                   component in the rotated coordinate */
16905 /*                   system).  ELAT and ELON must be in the */
16906 /*                   range -90 to 90 and -180 to 180, respec- */
16907 /*                   tively. */
16908 
16909 /*       A = Angular distance in degrees from E to the boun- */
16910 /*           dary of a circular window against which the */
16911 /*           Voronoi diagram is clipped.  The projected win- */
16912 /*           dow is a disk of radius r = Sin(A) centered at */
16913 /*           the origin, and only visible vertices whose */
16914 /*           projections are within distance r of the origin */
16915 /*           are included in the plot.  Thus, if A = 90, the */
16916 /*           plot includes the entire hemisphere centered at */
16917 /*           E.  0 .LT. A .LE. 90. */
16918 
16919 /*       N = Number of nodes (Voronoi centers) and Voronoi */
16920 /*           regions.  N .GE. 3. */
16921 
16922 /*       X,Y,Z = Arrays of length N containing the Cartesian */
16923 /*               coordinates of the nodes (unit vectors). */
16924 
16925 /*       NT = Number of Voronoi region vertices (triangles, */
16926 /*            including those in the extended triangulation */
16927 /*            if the number of boundary nodes NB is nonzero): */
16928 /*            NT = 2*N-4. */
16929 
16930 /*       LISTC = Array of length 3*NT containing triangle */
16931 /*               indexes (indexes to XC, YC, and ZC) stored */
16932 /*               in 1-1 correspondence with LIST/LPTR entries */
16933 /*               (or entries that would be stored in LIST for */
16934 /*               the extended triangulation):  the index of */
16935 /*               triangle (N1,N2,N3) is stored in LISTC(K), */
16936 /*               LISTC(L), and LISTC(M), where LIST(K), */
16937 /*               LIST(L), and LIST(M) are the indexes of N2 */
16938 /*               as a neighbor of N1, N3 as a neighbor of N2, */
16939 /*               and N1 as a neighbor of N3.  The Voronoi */
16940 /*               region associated with a node is defined by */
16941 /*               the CCW-ordered sequence of circumcenters in */
16942 /*               one-to-one correspondence with its adjacency */
16943 /*               list (in the extended triangulation). */
16944 
16945 /*       LPTR = Array of length 3*NT = 6*N-12 containing a */
16946 /*              set of pointers (LISTC indexes) in one-to-one */
16947 /*              correspondence with the elements of LISTC. */
16948 /*              LISTC(LPTR(I)) indexes the triangle which */
16949 /*              follows LISTC(I) in cyclical counterclockwise */
16950 /*              order (the first neighbor follows the last */
16951 /*              neighbor). */
16952 
16953 /*       LEND = Array of length N containing a set of */
16954 /*              pointers to triangle lists.  LP = LEND(K) */
16955 /*              points to a triangle (indexed by LISTC(LP)) */
16956 /*              containing node K for K = 1 to N. */
16957 
16958 /*       XC,YC,ZC = Arrays of length NT containing the */
16959 /*                  Cartesian coordinates of the triangle */
16960 /*                  circumcenters (Voronoi vertices). */
16961 /*                  XC(I)**2 + YC(I)**2 + ZC(I)**2 = 1. */
16962 
16963 /*       TITLE = Type CHARACTER variable or constant contain- */
16964 /*               ing a string to be centered above the plot. */
16965 /*               The string must be enclosed in parentheses; */
16966 /*               i.e., the first and last characters must be */
16967 /*               '(' and ')', respectively, but these are not */
16968 /*               displayed.  TITLE may have at most 80 char- */
16969 /*               acters including the parentheses. */
16970 
16971 /*       NUMBR = Option indicator:  If NUMBR = TRUE, the */
16972 /*               nodal indexes are plotted at the Voronoi */
16973 /*               region centers. */
16974 
16975 /* Input parameters are not altered by this routine. */
16976 
16977 /* On output: */
16978 
16979 /*       IER = Error indicator: */
16980 /*             IER = 0 if no errors were encountered. */
16981 /*             IER = 1 if LUN, PLTSIZ, N, or NT is outside */
16982 /*                     its valid range. */
16983 /*             IER = 2 if ELAT, ELON, or A is outside its */
16984 /*                     valid range. */
16985 /*             IER = 3 if an error was encountered in writing */
16986 /*                     to unit LUN. */
16987 
16988 /* Module required by VRPLOT:  DRWARC */
16989 
16990 /* Intrinsic functions called by VRPLOT:  ABS, ATAN, COS, */
16991 /*                                          DBLE, NINT, SIN, */
16992 /*                                          SQRT */
16993 
16994 /* *********************************************************** */
16995 
16996 
16997     /* Parameter adjustments */
16998     --lend;
16999     --z__;
17000     --y;
17001     --x;
17002     --zc;
17003     --yc;
17004     --xc;
17005     --listc;
17006     --lptr;
17007 
17008     /* Function Body */
17009 
17010 /* Local parameters: */
17011 
17012 /* ANNOT =     long int variable with value TRUE iff the plot */
17013 /*               is to be annotated with the values of ELAT, */
17014 /*               ELON, and A */
17015 /* CF =        Conversion factor for degrees to radians */
17016 /* CT =        Cos(ELAT) */
17017 /* EX,EY,EZ =  Cartesian coordinates of the eye-position E */
17018 /* FSIZN =     Font size in points for labeling nodes with */
17019 /*               their indexes if NUMBR = TRUE */
17020 /* FSIZT =     Font size in points for the title (and */
17021 /*               annotation if ANNOT = TRUE) */
17022 /* IN1,IN2 =   long int variables with value TRUE iff the */
17023 /*               projections of vertices KV1 and KV2, respec- */
17024 /*               tively, are inside the window */
17025 /* IPX1,IPY1 = X and y coordinates (in points) of the lower */
17026 /*               left corner of the bounding box or viewport */
17027 /*               box */
17028 /* IPX2,IPY2 = X and y coordinates (in points) of the upper */
17029 /*               right corner of the bounding box or viewport */
17030 /*               box */
17031 /* IR =        Half the width (height) of the bounding box or */
17032 /*               viewport box in points -- viewport radius */
17033 /* KV1,KV2 =   Endpoint indexes of a Voronoi edge */
17034 /* LP =        LIST index (pointer) */
17035 /* LPL =       Pointer to the last neighbor of N0 */
17036 /* N0 =        Index of a node */
17037 /* NSEG =      Number of line segments used by DRWARC in a */
17038 /*               polygonal approximation to a projected edge */
17039 /* P1 =        Coordinates of vertex KV1 in the rotated */
17040 /*               coordinate system */
17041 /* P2 =        Coordinates of vertex KV2 in the rotated */
17042 /*               coordinate system or intersection of edge */
17043 /*               KV1-KV2 with the equator (in the rotated */
17044 /*               coordinate system) */
17045 /* R11...R23 = Components of the first two rows of a rotation */
17046 /*               that maps E to the north pole (0,0,1) */
17047 /* SF =        Scale factor for mapping world coordinates */
17048 /*               (window coordinates in [-WR,WR] X [-WR,WR]) */
17049 /*               to viewport coordinates in [IPX1,IPX2] X */
17050 /*               [IPY1,IPY2] */
17051 /* T =         Temporary variable */
17052 /* TOL =       Maximum distance in points between a projected */
17053 /*               Voronoi edge and its approximation by a */
17054 /*               polygonal curve */
17055 /* TX,TY =     Translation vector for mapping world coordi- */
17056 /*               nates to viewport coordinates */
17057 /* WR =        Window radius r = Sin(A) */
17058 /* WRS =       WR**2 */
17059 /* X0,Y0 =     Projection plane coordinates of node N0 or */
17060 /*               label location */
17061 
17062 
17063 /* Test for invalid parameters. */
17064 
17065     if (*lun < 0 || *lun > 99 || *pltsiz < 1. || *pltsiz > 8.5 || *n < 3 || *
17066             nt != 2 * *n - 4) {
17067         goto L11;
17068     }
17069     if (abs(*elat) > 90. || abs(*elon) > 180. || *a > 90.) {
17070         goto L12;
17071     }
17072 
17073 /* Compute a conversion factor CF for degrees to radians */
17074 /*   and compute the window radius WR. */
17075 
17076     cf = atan(1.) / 45.;
17077     wr = sin(cf * *a);
17078     wrs = wr * wr;
17079 
17080 /* Compute the lower left (IPX1,IPY1) and upper right */
17081 /*   (IPX2,IPY2) corner coordinates of the bounding box. */
17082 /*   The coordinates, specified in default user space units */
17083 /*   (points, at 72 points/inch with origin at the lower */
17084 /*   left corner of the page), are chosen to preserve the */
17085 /*   square aspect ratio, and to center the plot on the 8.5 */
17086 /*   by 11 inch page.  The center of the page is (306,396), */
17087 /*   and IR = PLTSIZ/2 in points. */
17088 
17089     d__1 = *pltsiz * 36.;
17090     ir = i_dnnt(&d__1);
17091     ipx1 = 306 - ir;
17092     ipx2 = ir + 306;
17093     ipy1 = 396 - ir;
17094     ipy2 = ir + 396;
17095 
17096 /* Output header comments. */
17097 
17098 /*      WRITE (LUN,100,ERR=13) IPX1, IPY1, IPX2, IPY2 */
17099 /*  100 FORMAT ('%!PS-Adobe-3.0 EPSF-3.0'/ */
17100 /*     .        '%%BoundingBox:',4I4/ */
17101 /*     .        '%%Title:  Voronoi diagram'/ */
17102 /*     .        '%%Creator:  STRIPACK'/ */
17103 /*     .        '%%EndComments') */
17104 /* Set (IPX1,IPY1) and (IPX2,IPY2) to the corner coordinates */
17105 /*   of a viewport box obtained by shrinking the bounding box */
17106 /*   by 12% in each dimension. */
17107 
17108     d__1 = (double) ir * .88;
17109     ir = i_dnnt(&d__1);
17110     ipx1 = 306 - ir;
17111     ipx2 = ir + 306;
17112     ipy1 = 396 - ir;
17113     ipy2 = ir + 396;
17114 
17115 /* Set the line thickness to 2 points, and draw the */
17116 /*   viewport boundary. */
17117 
17118     t = 2.;
17119 /*      WRITE (LUN,110,ERR=13) T */
17120 /*      WRITE (LUN,120,ERR=13) IR */
17121 /*      WRITE (LUN,130,ERR=13) */
17122 /*  110 FORMAT (F12.6,' setlinewidth') */
17123 /*  120 FORMAT ('306 396 ',I3,' 0 360 arc') */
17124 /*  130 FORMAT ('stroke') */
17125 
17126 /* Set up an affine mapping from the window box [-WR,WR] X */
17127 /*   [-WR,WR] to the viewport box. */
17128 
17129     sf = (double) ir / wr;
17130     tx = ipx1 + sf * wr;
17131     ty = ipy1 + sf * wr;
17132 /*      WRITE (LUN,140,ERR=13) TX, TY, SF, SF */
17133 /*  140 FORMAT (2F12.6,' translate'/ */
17134 /*     .        2F12.6,' scale') */
17135 
17136 /* The line thickness must be changed to reflect the new */
17137 /*   scaling which is applied to all subsequent output. */
17138 /*   Set it to 1.0 point. */
17139 
17140     t = 1. / sf;
17141 /*      WRITE (LUN,110,ERR=13) T */
17142 
17143 /* Save the current graphics state, and set the clip path to */
17144 /*   the boundary of the window. */
17145 
17146 /*      WRITE (LUN,150,ERR=13) */
17147 /*      WRITE (LUN,160,ERR=13) WR */
17148 /*      WRITE (LUN,170,ERR=13) */
17149 /*  150 FORMAT ('gsave') */
17150 /*  160 FORMAT ('0 0 ',F12.6,' 0 360 arc') */
17151 /*  170 FORMAT ('clip newpath') */
17152 
17153 /* Compute the Cartesian coordinates of E and the components */
17154 /*   of a rotation R which maps E to the north pole (0,0,1). */
17155 /*   R is taken to be a rotation about the z-axis (into the */
17156 /*   yz-plane) followed by a rotation about the x-axis chosen */
17157 /*   so that the view-up direction is (0,0,1), or (-1,0,0) if */
17158 /*   E is the north or south pole. */
17159 
17160 /*           ( R11  R12  0   ) */
17161 /*       R = ( R21  R22  R23 ) */
17162 /*           ( EX   EY   EZ  ) */
17163 
17164     t = cf * *elon;
17165     ct = cos(cf * *elat);
17166     ex = ct * cos(t);
17167     ey = ct * sin(t);
17168     ez = sin(cf * *elat);
17169     if (ct != 0.) {
17170         r11 = -ey / ct;
17171         r12 = ex / ct;
17172     } else {
17173         r11 = 0.;
17174         r12 = 1.;
17175     }
17176     r21 = -ez * r12;
17177     r22 = ez * r11;
17178     r23 = ct;
17179 
17180 /* Loop on nodes (Voronoi centers) N0. */
17181 /*   LPL indexes the last neighbor of N0. */
17182 
17183     i__1 = *n;
17184     for (n0 = 1; n0 <= i__1; ++n0) {
17185         lpl = lend[n0];
17186 
17187 /* Set KV2 to the first (and last) vertex index and compute */
17188 /*   its coordinates P2 in the rotated coordinate system. */
17189 
17190         kv2 = listc[lpl];
17191         p2[0] = r11 * xc[kv2] + r12 * yc[kv2];
17192         p2[1] = r21 * xc[kv2] + r22 * yc[kv2] + r23 * zc[kv2];
17193         p2[2] = ex * xc[kv2] + ey * yc[kv2] + ez * zc[kv2];
17194 
17195 /*   IN2 = TRUE iff KV2 is in the window. */
17196 
17197         in2 = p2[2] >= 0. && p2[0] * p2[0] + p2[1] * p2[1] <= wrs;
17198 
17199 /* Loop on neighbors N1 of N0.  For each triangulation edge */
17200 /*   N0-N1, KV1-KV2 is the corresponding Voronoi edge. */
17201 
17202         lp = lpl;
17203 L1:
17204         lp = lptr[lp];
17205         kv1 = kv2;
17206         p1[0] = p2[0];
17207         p1[1] = p2[1];
17208         p1[2] = p2[2];
17209         in1 = in2;
17210         kv2 = listc[lp];
17211 
17212 /*   Compute the new values of P2 and IN2. */
17213 
17214         p2[0] = r11 * xc[kv2] + r12 * yc[kv2];
17215         p2[1] = r21 * xc[kv2] + r22 * yc[kv2] + r23 * zc[kv2];
17216         p2[2] = ex * xc[kv2] + ey * yc[kv2] + ez * zc[kv2];
17217         in2 = p2[2] >= 0. && p2[0] * p2[0] + p2[1] * p2[1] <= wrs;
17218 
17219 /* Add edge KV1-KV2 to the path iff both endpoints are inside */
17220 /*   the window and KV2 > KV1, or KV1 is inside and KV2 is */
17221 /*   outside (so that the edge is drawn only once). */
17222 
17223         if (! in1 || (in2 && kv2 <= kv1)) {
17224             goto L2;
17225         }
17226         if (p2[2] < 0.) {
17227 
17228 /*   KV2 is a 'southern hemisphere' point.  Move it to the */
17229 /*     intersection of edge KV1-KV2 with the equator so that */
17230 /*     the edge is clipped properly.  P2(3) is set to 0. */
17231 
17232             p2[0] = p1[2] * p2[0] - p2[2] * p1[0];
17233             p2[1] = p1[2] * p2[1] - p2[2] * p1[1];
17234             t = sqrt(p2[0] * p2[0] + p2[1] * p2[1]);
17235             p2[0] /= t;
17236             p2[1] /= t;
17237         }
17238 
17239 /*   Add the edge to the path.  (TOL is converted to world */
17240 /*     coordinates.) */
17241 
17242         if (p2[2] < 0.) {
17243             p2[2] = 0.f;
17244         }
17245         d__1 = tol / sf;
17246         drwarc_(lun, p1, p2, &d__1, &nseg);
17247 
17248 /* Bottom of loops. */
17249 
17250 L2:
17251         if (lp != lpl) {
17252             goto L1;
17253         }
17254 /* L3: */
17255     }
17256 
17257 /* Paint the path and restore the saved graphics state (with */
17258 /*   no clip path). */
17259 
17260 /*      WRITE (LUN,130,ERR=13) */
17261 /*      WRITE (LUN,190,ERR=13) */
17262 /*  190 FORMAT ('grestore') */
17263     if (*numbr) {
17264 
17265 /* Nodes in the window are to be labeled with their indexes. */
17266 /*   Convert FSIZN from points to world coordinates, and */
17267 /*   output the commands to select a font and scale it. */
17268 
17269         t = fsizn / sf;
17270 /*        WRITE (LUN,200,ERR=13) T */
17271 /*  200   FORMAT ('/Helvetica findfont'/ */
17272 /*     .          F12.6,' scalefont setfont') */
17273 
17274 /* Loop on visible nodes N0 that project to points (X0,Y0) in */
17275 /*   the window. */
17276 
17277         i__1 = *n;
17278         for (n0 = 1; n0 <= i__1; ++n0) {
17279             if (ex * x[n0] + ey * y[n0] + ez * z__[n0] < 0.) {
17280                 goto L4;
17281             }
17282             x0 = r11 * x[n0] + r12 * y[n0];
17283             y0 = r21 * x[n0] + r22 * y[n0] + r23 * z__[n0];
17284             if (x0 * x0 + y0 * y0 > wrs) {
17285                 goto L4;
17286             }
17287 
17288 /*   Move to (X0,Y0), and draw the label N0 with the origin */
17289 /*     of the first character at (X0,Y0). */
17290 
17291 /*          WRITE (LUN,210,ERR=13) X0, Y0 */
17292 /*          WRITE (LUN,220,ERR=13) N0 */
17293 /*  210     FORMAT (2F12.6,' moveto') */
17294 /*  220     FORMAT ('(',I3,') show') */
17295 L4:
17296             ;
17297         }
17298     }
17299 
17300 /* Convert FSIZT from points to world coordinates, and output */
17301 /*   the commands to select a font and scale it. */
17302 
17303     t = fsizt / sf;
17304 /*      WRITE (LUN,200,ERR=13) T */
17305 
17306 /* Display TITLE centered above the plot: */
17307 
17308     y0 = wr + t * 3.;
17309 /*      WRITE (LUN,230,ERR=13) TITLE, Y0 */
17310 /*  230 FORMAT (A80/'  stringwidth pop 2 div neg ',F12.6, */
17311 /*     .        ' moveto') */
17312 /*      WRITE (LUN,240,ERR=13) TITLE */
17313 /*  240 FORMAT (A80/'  show') */
17314     if (annot) {
17315 
17316 /* Display the window center and radius below the plot. */
17317 
17318         x0 = -wr;
17319         y0 = -wr - 50. / sf;
17320 /*        WRITE (LUN,210,ERR=13) X0, Y0 */
17321 /*        WRITE (LUN,250,ERR=13) ELAT, ELON */
17322         y0 -= t * 2.;
17323 /*        WRITE (LUN,210,ERR=13) X0, Y0 */
17324 /*        WRITE (LUN,260,ERR=13) A */
17325 /*  250   FORMAT ('(Window center:  ELAT = ',F7.2, */
17326 /*     .          ',  ELON = ',F8.2,') show') */
17327 /*  260   FORMAT ('(Angular extent:  A = ',F5.2,') show') */
17328     }
17329 
17330 /* Paint the path and output the showpage command and */
17331 /*   end-of-file indicator. */
17332 
17333 /*      WRITE (LUN,270,ERR=13) */
17334 /*  270 FORMAT ('stroke'/ */
17335 /*     .        'showpage'/ */
17336 /*     .        '%%EOF') */
17337 
17338 /* HP's interpreters require a one-byte End-of-PostScript-Job */
17339 /*   indicator (to eliminate a timeout error message): */
17340 /*   ASCII 4. */
17341 
17342 /*      WRITE (LUN,280,ERR=13) CHAR(4) */
17343 /*  280 FORMAT (A1) */
17344 
17345 /* No error encountered. */
17346 
17347     *ier = 0;
17348     return 0;
17349 
17350 /* Invalid input parameter LUN, PLTSIZ, N, or NT. */
17351 
17352 L11:
17353     *ier = 1;
17354     return 0;
17355 
17356 /* Invalid input parameter ELAT, ELON, or A. */
17357 
17358 L12:
17359     *ier = 2;
17360     return 0;
17361 
17362 /* Error writing to unit LUN. */
17363 
17364 /* L13: */
17365     *ier = 3;
17366     return 0;
17367 } /* vrplot_ */


Variable Documentation

int branch_all = 0

Definition at line 21166 of file util_sparx.cpp.

int* costlist_global

Definition at line 21322 of file util_sparx.cpp.

stcom_ stcom_1

Definition at line 7930 of file util_sparx.cpp.

Referenced by store_().


Generated on Thu Nov 17 12:44:34 2011 for EMAN2 by  doxygen 1.4.7