#include <symmetry.h>
Inheritance diagram for EMAN::Symmetry3D:
Public Types | |
typedef vector< vector< Vec3f > >::const_iterator | cit |
typedef vector< vector< Vec3f > >::iterator | ncit |
Public Member Functions | |
Symmetry3D () | |
virtual | ~Symmetry3D () |
virtual Dict | get_delimiters (const bool inc_mirror=false) const =0 |
Every Symmetry3D object must return a dictionary containing the delimiters that define its asymmetric unit (this is not strictly true in the case of the PlatonicSym class). | |
virtual Transform | get_sym (const int n) const =0 |
Every Symmetry3D object must provide access to the full set of its symmetry operators via this function. | |
virtual int | get_nsym () const =0 |
The total number of unique symmetry operations that will be return by this object when a calling program access Symmetry3D::get_sym. | |
virtual float | get_az_alignment_offset () const |
This functionality is only relevant to platonic symmetries. | |
virtual bool | is_platonic_sym () const |
A function that is used to determine if this is a platonic symmetry object This function is only virtually overidden by the PlatonicSym symmetry, which returns true, not false. | |
virtual bool | is_h_sym () const |
A function that is used to determine if this is a Helical symmetry object This function is only virtually overidden by the HSym symmetry, which returns true, not false. | |
virtual bool | is_c_sym () const |
A function that is used to determine if this is a c symmetry object This function is only virtually overidden by the CSym object, which returns true. | |
virtual bool | is_d_sym () const |
A function that is used to determine if this is a d symmetry object This function is only virtually overidden by the DSym object, which returns true. | |
virtual bool | is_tet_sym () const |
A function that is used to determine if this is the tetrahedral symmetry object This function is only virtually overidden by the TetSym object, which returns true. | |
virtual int | get_max_csym () const =0 |
The Symmetry3D object must return the maximum degree of symmetry it exhibits about any one axis. | |
virtual vector< Vec3f > | get_asym_unit_points (bool inc_mirror) const =0 |
The Symmetry3D object must be capable of returning an ordered list of points on the unit sphere that define its asymmetric unit (with mirror considerations). | |
vector< Transform > | gen_orientations (const string &generatorname="eman", const Dict &parms=Dict()) |
Ask the Symmetry3D object to generate a set of orientations in its asymmetric unit using an OrientationGenerator constructed from the given parameters (using a Factory). | |
virtual bool | is_in_asym_unit (const float &altitude, const float &azimuth, const bool inc_mirror) const =0 |
A function to be used when generating orientations over portion of the unit sphere defined by parameters returned by get_delimiters. | |
virtual Transform | reduce (const Transform &t3d, int n=0) const |
A function that will reduce an orientation, as characterized by Euler anges, into a specific asymmetric unit. | |
virtual int | in_which_asym_unit (const Transform &t3d) const |
A function that will determine in which asymmetric unit a given orientation resides The asymmetric unit 'number' will depend entirely on the order in which different symmetry operations are return by the Symmetry3D::get_sym function. | |
virtual int | point_in_which_asym_unit (const Vec3f &v) const |
A function that will determine in which asymmetric unit a given vector resides The asymmetric unit 'number' will depend entirely on the order in which different symmetry operations are return by the Symmetry3D::get_sym function The vector is a point. | |
virtual vector< vector< Vec3f > > | get_asym_unit_triangles (bool inc_mirror) const =0 |
Get triangles that precisely occlude the projection area of the default asymmetric unit. | |
virtual vector< Transform > | get_touching_au_transforms (bool inc_mirror=true) const |
Gets a vector of Transform objects that define the set of asymmetric units that touch the default asymmetric unit. | |
virtual vector< Transform > | get_syms () const |
Static Public Member Functions | |
vector< Transform > | get_symmetries (const string &symmetry) |
Protected Member Functions | |
void | cache_au_planes () const |
Establish the asymmetric unit planes cache. | |
void | delete_au_planes () |
Clear the asymmetric unit planes cache. | |
Protected Attributes | |
float ** | cached_au_planes |
The asymmetric unit planes are cached to provide a great speed up the point_in_which_asym_unit function, which is called by reduce and by in_which_asym_unit. | |
int | cache_size |
Have to remember the cache size. | |
int | num_triangles |
This is stores the number of triangles returned by get_asym_unit_triangles(true). | |
vector< vector< Vec3f > > | au_sym_triangles |
This cache is of size cache_size. | |
Private Member Functions | |
Symmetry3D (const Symmetry3D &) | |
Disallow copy construction. | |
Symmetry3D & | operator= (const Symmetry3D &) |
Disallow assignment. |
Objects of this type must provide delimiters for the asymmetric unit (get_delimiters), and must also provide all of the rotational symmetric operations (get_sym(const int n)). They must also provide the total number of unique symmetric operations with get_nsym (except in helical symmetry). get_delimiter returns a dictionary with "alt_max" and "az_max" keys, which correspond to the encompassing azimuth and altitude angles of the asymmetric unit. These can be interpreted in a relatively straight forward fashion when dealing with C and D symmetries to demarcate the asymmetric unit, however when dealing with Platonic symmetries the asymmetric unit is not so trivial. see http://blake.bcm.edu/emanwiki/EMAN2/Symmetry for figures and description of what we're doing here, for all the symmetries, and look in the comments of the PlatonicSym classes themselves. It inherits from a factory base, making it amenable to incorporation in EMAN2 style factories
Definition at line 56 of file symmetry.h.
|
Definition at line 59 of file symmetry.h. |
|
Definition at line 60 of file symmetry.h. Referenced by cache_au_planes(). |
|
Definition at line 930 of file symmetry.cpp. 00930 : cached_au_planes(0),cache_size(0),num_triangles(0),au_sym_triangles() {}
|
|
Definition at line 931 of file symmetry.cpp. References cached_au_planes, and delete_au_planes(). 00931 { 00932 if (cached_au_planes != 0 ) { 00933 delete_au_planes(); 00934 } 00935 }
|
|
Disallow copy construction.
|
|
Establish the asymmetric unit planes cache.
Definition at line 988 of file symmetry.cpp. References au_sym_triangles, cache_size, cached_au_planes, EMAN::Vec3< Type >::end(), EMAN::Util::equation_of_plane(), fit, get_asym_unit_triangles(), get_nsym(), get_sym(), ncit, num_triangles, t, and UnexpectedBehaviorException. Referenced by point_in_which_asym_unit(). 00988 { 00989 if (cached_au_planes == 0 ) { 00990 vector< vector<Vec3f> > au_triangles = get_asym_unit_triangles(true); 00991 num_triangles = au_triangles.size(); 00992 cache_size = get_nsym()*au_triangles.size(); 00993 00994 cached_au_planes = new float*[cache_size]; 00995 float** fit = cached_au_planes; 00996 for(int i =0; i < cache_size; ++i,++fit) { 00997 float *t = new float[4]; 00998 *fit = t; 00999 } 01000 01001 01002 int k = 0; 01003 for(int i = 0; i < get_nsym(); ++i) { 01004 01005 for( ncit it = au_triangles.begin(); it != au_triangles.end(); ++it, ++k) 01006 { 01007 // For each given triangle 01008 vector<Vec3f> points = *it; 01009 if ( i != 0 ) { 01010 for (vector<Vec3f>::iterator iit = points.begin(); iit != points.end(); ++iit ) { 01011 // Rotate the points in the triangle so that the triangle occupies the 01012 // space of the current asymmetric unit 01013 *iit = (*iit)*get_sym(i); 01014 } 01015 } 01016 01017 au_sym_triangles.push_back(points); 01018 01019 // Determine the equation of the plane for the points, store it in plane 01020 Util::equation_of_plane(points[0],points[2],points[1],cached_au_planes[k]); 01021 } 01022 } 01023 } 01024 else throw UnexpectedBehaviorException("Attempt to generate a cache when cache exists"); 01025 }
|
|
Clear the asymmetric unit planes cache.
Definition at line 1027 of file symmetry.cpp. References cached_au_planes, fit, and UnexpectedBehaviorException. Referenced by ~Symmetry3D(). 01027 { 01028 if (cached_au_planes == 0 ) throw UnexpectedBehaviorException("Attempt to delete a cache that does not exist"); 01029 float** fit = cached_au_planes; 01030 for(int i =0; i < cache_size; ++i,++fit) { 01031 if (*fit == 0) throw UnexpectedBehaviorException("Attempt to delete a cache that does not exist"); 01032 delete [] *fit; 01033 *fit = 0; 01034 } 01035 01036 delete [] cached_au_planes; 01037 cached_au_planes = 0; 01038 }
|
|
Ask the Symmetry3D object to generate a set of orientations in its asymmetric unit using an OrientationGenerator constructed from the given parameters (using a Factory). This is reminiscent of the strategy design pattern
Definition at line 157 of file symmetry.cpp. References EMAN::OrientationGenerator::gen_orientations(), and EMAN::Util::str_to_lower(). Referenced by EMAN::SymAlignProcessor::align(), and EMAN::RT3DSphereAligner::xform_align_nbest(). 00158 { 00159 ENTERFUNC; 00160 vector<Transform> ret; 00161 OrientationGenerator *g = Factory < OrientationGenerator >::get(Util::str_to_lower(generatorname), parms); 00162 if (g) { 00163 ret = g->gen_orientations(this); 00164 if( g ) 00165 { 00166 delete g; 00167 g = 0; 00168 } 00169 } 00170 else throw; 00171 00172 EXITFUNC; 00173 00174 return ret; 00175 }
|
|
The Symmetry3D object must be capable of returning an ordered list of points on the unit sphere that define its asymmetric unit (with mirror considerations). The list can be any length, and must be constructed carefully. If the list consists of points A B and C, then arcs on the unit sphere connecting A to B, then B to C, then C to A must define the asymmetric unit (with or without its mirror portion). i.e. it is a cyclic list, on any length
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::PlatonicSym, and EMAN::TetrahedralSym. Referenced by get_touching_au_transforms(). |
|
Get triangles that precisely occlude the projection area of the default asymmetric unit. This will be used for collision detection in Symmetry3D::reduce
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, and EMAN::PlatonicSym. Referenced by cache_au_planes(). |
|
This functionality is only relevant to platonic symmetries. But it could grow into functionality for the other symmetries. Reimplemented in EMAN::TetrahedralSym, and EMAN::IcosahedralSym. Definition at line 86 of file symmetry.h. Referenced by EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), and EMAN::PlatonicSym::get_asym_unit_points(). 00086 { return 0.0; }
|
|
Every Symmetry3D object must return a dictionary containing the delimiters that define its asymmetric unit (this is not strictly true in the case of the PlatonicSym class).
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, and EMAN::PlatonicSym. Referenced by EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::SaffOrientationGenerator::get_orientations_tally(), EMAN::EvenOrientationGenerator::get_orientations_tally(), EMAN::EmanOrientationGenerator::get_orientations_tally(), and get_touching_au_transforms(). |
|
The Symmetry3D object must return the maximum degree of symmetry it exhibits about any one axis. This function is only called in the AsymmUnitOrientationGenerator. Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::TetrahedralSym, EMAN::OctahedralSym, and EMAN::IcosahedralSym. Referenced by EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::get_orientations_tally(), and EMAN::PlatonicSym::init(). |
|
The total number of unique symmetry operations that will be return by this object when a calling program access Symmetry3D::get_sym.
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::TetrahedralSym, EMAN::OctahedralSym, and EMAN::IcosahedralSym. Referenced by cache_au_planes(), EMAN::BackProjectionReconstructor::finish(), EMAN::RandomOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::OrientationGenerator::get_az_max(), EMAN::Transform::get_nsym(), EMAN::EmanOrientationGenerator::get_orientations_tally(), EMAN::Transform::get_sym_proj(), get_syms(), get_touching_au_transforms(), and point_in_which_asym_unit(). |
|
Every Symmetry3D object must provide access to the full set of its symmetry operators via this function.
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::TetrahedralSym, EMAN::OctahedralSym, and EMAN::IcosahedralSym. Referenced by cache_au_planes(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::Transform::get_sym(), EMAN::Transform::get_sym_proj(), get_syms(), get_touching_au_transforms(), and reduce(). |
|
Definition at line 1194 of file symmetry.cpp. References EMAN::Factory< T >::get(), and get_syms(). Referenced by EMAN::SymAlignProcessor::align(), EMAN::WienerFourierReconstructor::do_compare_slice_work(), EMAN::FourierReconstructor::do_compare_slice_work(), EMAN::WienerFourierReconstructor::do_insert_slice_work(), EMAN::FourierReconstructor::do_insert_slice_work(), EMAN::SymSearchProcessor::process_inplace(), and EMAN::RT3DSymmetryAligner::xform_align_nbest(). 01195 { 01196 Symmetry3D* sym = Factory<Symmetry3D>::get(Util::str_to_lower(symmetry)); 01197 vector<Transform> ret = sym->get_syms(); 01198 delete sym; 01199 return ret; 01200 }
|
|
Definition at line 1178 of file symmetry.cpp. References get_nsym(), and get_sym(). Referenced by EMAN::BackProjectionReconstructor::finish(), get_symmetries(), and EMAN::ApplySymProcessor::process(). 01179 { 01180 01181 vector<Transform> ret; 01182 // if (t.is_identity()) { 01183 for(int i = 0; i < get_nsym(); ++i ) { 01184 ret.push_back(get_sym(i)); 01185 } 01186 // } else { 01187 // for(int i = 0; i < get_nsym(); ++i ) { 01188 // ret.push_back(get_sym(i)*t); 01189 // } 01190 // } 01191 return ret; 01192 }
|
|
Gets a vector of Transform objects that define the set of asymmetric units that touch the default asymmetric unit. The 'default asymmetric unit' is defined by the results of Symmetry3d::get_asym_unit_points and is sensitive to whether or not you want to include the mirror part of the asymmetric unit. This function is useful when used in conjunction with Symmetry3D::reduce, and particularly when finding the angular deviation of particles through different stages of iterative Single Particle Reconstruction This function could be expanded to work for an asymmetric unit number supplied by the user.
Definition at line 1109 of file symmetry.cpp. References EMAN::Dict::end(), get_asym_unit_points(), get_delimiters(), get_nsym(), get_sym(), is_d_sym(), is_platonic_sym(), EMAN::Vec3< Type >::squared_length(), t, EMAN::Vec3f, x, and y. 01110 { 01111 vector<Transform> ret; 01112 vector<int> hit_cache; 01113 01114 vector<Vec3f> points = get_asym_unit_points(inc_mirror); 01115 // Warning, this is a gross hack because it is assuming that the asym_unit_points 01116 // returned by DSym are in a particular orientation with respect to symmetric axes 01117 // if the internals of DSym change it could change what we should do here... 01118 // but for the time being it will do 01119 if (inc_mirror && is_d_sym() && (get_nsym()/2 % 2 == 0)) { 01120 Dict delim = get_delimiters(false); 01121 float angle = (float)(EMConsts::deg2rad*float(delim["az_max"])); 01122 float y = -cos(angle); 01123 float x = sin(angle); 01124 points.push_back(Vec3f(x,y,0)); 01125 } 01126 else if ( is_d_sym() && (get_nsym()/2 % 2 == 1)) { 01127 Dict delim = get_delimiters(false); 01128 float angle = float(delim["az_max"])/2.0f; 01129 // cout << "Odd dsym using " << angle << endl; 01130 angle *= (float)EMConsts::deg2rad; 01131 float y = -cos(angle); 01132 float x = sin(angle); 01133 points.push_back(Vec3f(x,y,0)); 01134 01135 if ( inc_mirror ) { 01136 angle = 3.0f*(float(delim["az_max"]))/2.0f; 01137 angle *= (float)EMConsts::deg2rad; 01138 float y = -cos(angle); 01139 float x = sin(angle); 01140 points.push_back(Vec3f(x,y,0)); 01141 } 01142 } 01143 01144 typedef vector<Vec3f>::const_iterator const_point_it; 01145 for(const_point_it point = points.begin(); point != points.end(); ++point ) { 01146 01147 for(int i = 1; i < get_nsym(); ++i) { 01148 01149 if ( find(hit_cache.begin(),hit_cache.end(),i) != hit_cache.end() ) continue; 01150 Transform t = get_sym(i); 01151 Vec3f result = (*point)*t; 01152 01153 if (is_platonic_sym()) { 01154 for(const_point_it tmp = points.begin(); tmp != points.end(); ++tmp ) { 01155 Vec3f tt = result-(*tmp); 01156 if (tt.squared_length() < 0.01f) { 01157 hit_cache.push_back(i); 01158 ret.push_back(t); 01159 } 01160 01161 } 01162 } 01163 else { 01164 result -= *point; 01165 if (result.squared_length() < 0.05f) { 01166 hit_cache.push_back(i); 01167 ret.push_back(t); 01168 } 01169 } 01170 } 01171 01172 } 01173 01174 return ret; 01175 }
|
|
A function that will determine in which asymmetric unit a given orientation resides The asymmetric unit 'number' will depend entirely on the order in which different symmetry operations are return by the Symmetry3D::get_sym function.
Definition at line 969 of file symmetry.cpp. References EMAN::Transform::invert(), point_in_which_asym_unit(), and EMAN::Vec3f. Referenced by reduce(). 00970 { 00971 // Here it is assumed that final destination of the orientation (as encapsulated in the t3d object) is 00972 // in the z direction, so in essence we will start in the direction z and 'undo' the orientation to get the real 00973 // direction 00974 Vec3f p(0,0,1); 00975 00976 Transform o(t3d); 00977 // Orientations are alway transposed when dealing with asymmetric units, projections,etc 00978 // We take the transpose to 'undo' the transform and get the true direction of the point. 00979 o.invert(); 00980 // Figure out where the point would end up. No we could just as easily not transpose and do 00981 // left multiplation (as in what occurs in the FourierReconstructor during slice insertion) 00982 p = o*p; 00983 00984 return point_in_which_asym_unit(p); 00985 }
|
|
A function that is used to determine if this is a c symmetry object This function is only virtually overidden by the CSym object, which returns true.
Reimplemented in EMAN::CSym. Definition at line 106 of file symmetry.h. Referenced by EMAN::RandomOrientationGenerator::gen_orientations(), and EMAN::OrientationGenerator::get_az_max(). 00106 { return false; }
|
|
A function that is used to determine if this is a d symmetry object This function is only virtually overidden by the DSym object, which returns true.
Reimplemented in EMAN::DSym. Definition at line 112 of file symmetry.h. Referenced by EMAN::OrientationGenerator::get_az_max(), and get_touching_au_transforms(). 00112 { return false; }
|
|
A function that is used to determine if this is a Helical symmetry object This function is only virtually overidden by the HSym symmetry, which returns true, not false.
Reimplemented in EMAN::HSym. Definition at line 100 of file symmetry.h. Referenced by EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::SaffOrientationGenerator::get_orientations_tally(), EMAN::EvenOrientationGenerator::get_orientations_tally(), and EMAN::EmanOrientationGenerator::get_orientations_tally(). 00100 { return false; }
|
|
A function to be used when generating orientations over portion of the unit sphere defined by parameters returned by get_delimiters. In platonic symmetry altitude and azimuth alone are not enough to correctly demarcate the asymmetric unit. See the get_delimiters comments.
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::PlatonicSym, and EMAN::TetrahedralSym. Referenced by EMAN::OptimumOrientationGenerator::gen_orientations(), EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::RandomOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::SaffOrientationGenerator::get_orientations_tally(), EMAN::EvenOrientationGenerator::get_orientations_tally(), and EMAN::EmanOrientationGenerator::get_orientations_tally(). |
|
A function that is used to determine if this is a platonic symmetry object This function is only virtually overidden by the PlatonicSym symmetry, which returns true, not false.
Reimplemented in EMAN::PlatonicSym. Definition at line 94 of file symmetry.h. Referenced by EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::OrientationGenerator::get_az_max(), EMAN::SaffOrientationGenerator::get_orientations_tally(), EMAN::EvenOrientationGenerator::get_orientations_tally(), EMAN::EmanOrientationGenerator::get_orientations_tally(), and get_touching_au_transforms(). 00094 { return false; }
|
|
A function that is used to determine if this is the tetrahedral symmetry object This function is only virtually overidden by the TetSym object, which returns true.
Reimplemented in EMAN::TetrahedralSym. Definition at line 118 of file symmetry.h. Referenced by EMAN::OrientationGenerator::get_az_max(). 00118 { return false; }
|
|
Disallow assignment.
|
|
A function that will determine in which asymmetric unit a given vector resides The asymmetric unit 'number' will depend entirely on the order in which different symmetry operations are return by the Symmetry3D::get_sym function The vector is a point.
Definition at line 1040 of file symmetry.cpp. References au_sym_triangles, cache_au_planes(), cached_au_planes, EMAN::Vec3< Type >::dot(), get_nsym(), t, v, and EMAN::Vec3f. Referenced by in_which_asym_unit(), and EMAN::AutoMaskAsymUnit::process_inplace(). 01041 { 01042 if (cached_au_planes == 0) { 01043 cache_au_planes(); 01044 } 01045 01046 float epsNow=0.01f; 01047 int k = 0; 01048 for(int i = 0; i < get_nsym(); ++i) { 01049 for( int j = 0; j < num_triangles; ++j,++k) { 01050 vector<Vec3f> points = au_sym_triangles[k]; 01051 01052 float* plane = cached_au_planes[k]; 01053 Vec3f tmp = p; 01054 01055 // Determine the intersection of p with the plane - do this by finding out how much p should be scaled by 01056 float scale = plane[0]*tmp[0]+plane[1]*tmp[1]+plane[2]*tmp[2]; 01057 if ( scale != 0 ) 01058 scale = -plane[3]/scale; 01059 else { 01060 // parralel! 01061 continue; 01062 } 01063 01064 // If the scale factor is less than zero, then p is definitely not in this asymmetric unit 01065 if (scale <= 0) continue; 01066 01067 // This is the intersection point 01068 Vec3f pp = tmp*scale; 01069 01070 // Now we have to see if the point p is inside the region bounded by the points, or if it is outside 01071 // If it is inside the region then p is in this asymmetric unit. 01072 01073 // This formula take from FIXME fill in once I get to work 01074 Vec3f v = points[2]-points[0]; 01075 Vec3f u = points[1]-points[0]; 01076 Vec3f w = pp - points[0]; 01077 01078 float udotu = u.dot(u); 01079 float udotv = u.dot(v); 01080 float udotw = u.dot(w); 01081 float vdotv = v.dot(v); 01082 float vdotw = v.dot(w); 01083 01084 float d = 1.0f/(udotv*udotv - udotu*vdotv); 01085 float s = udotv*vdotw - vdotv*udotw; 01086 s *= d; 01087 01088 float t = udotv*udotw - udotu*vdotw; 01089 t *= d; 01090 01091 // We've done a few multiplications, so detect when there are tiny residuals that may throw off the final 01092 // decision 01093 if (fabs(s) < Transform::ERR_LIMIT ) s = 0; 01094 if (fabs(t) < Transform::ERR_LIMIT ) t = 0; 01095 01096 if ( fabs((fabs(s)-1.0)) < Transform::ERR_LIMIT ) s = 1; 01097 if ( fabs((fabs(t)-1.0)) < Transform::ERR_LIMIT ) t = 1; 01098 01099 // The final decision, if this is true then we've hit the jackpot 01100 if ( s >= -epsNow && t >= -epsNow && (s+t) <= 1+epsNow ) { 01101 // cout << " i " << i << " j " << j << " s " << s << " t " << t << " s+t " << s+t << endl; 01102 return i; 01103 } 01104 } 01105 } 01106 01107 return -1; 01108 }
|
|
This cache is of size cache_size.
Definition at line 214 of file symmetry.h. Referenced by cache_au_planes(), and point_in_which_asym_unit(). |
|
Have to remember the cache size.
Definition at line 210 of file symmetry.h. Referenced by cache_au_planes(). |
|
The asymmetric unit planes are cached to provide a great speed up the point_in_which_asym_unit function, which is called by reduce and by in_which_asym_unit.
Definition at line 207 of file symmetry.h. Referenced by cache_au_planes(), delete_au_planes(), point_in_which_asym_unit(), and ~Symmetry3D(). |
|
This is stores the number of triangles returned by get_asym_unit_triangles(true).
Definition at line 212 of file symmetry.h. Referenced by cache_au_planes(). |