#include <symmetry.h>
Inheritance diagram for EMAN::IcosahedralSym:
Public Member Functions | |
IcosahedralSym () | |
Constructor calls PlatonicSym::init. | |
virtual | ~IcosahedralSym () |
virtual string | get_name () const |
Return IcosahedralSym::NAME. | |
virtual string | get_desc () const |
Get a description. | |
virtual int | get_max_csym () const |
Gets the maximum symmetry of this object. | |
virtual Transform | get_sym (const int n) const |
This function provides access to the unique rotational symmetries of an icosahedron. | |
virtual int | get_nsym () const |
Gets the total number of unique roational symmetry operations associated with this symmetry For icosahedral symmetry, this is 60. | |
virtual float | get_az_alignment_offset () const |
Get the azimuth alignment offset required to ensure that orientations align correctly with symmetric axes of the icosahedron. | |
Static Public Member Functions | |
Symmetry3D * | NEW () |
Factory support function NEW. | |
Static Public Attributes | |
const string | NAME = "icos" |
The name of this class - used to access it from factories etc. Should be "icos". | |
Private Member Functions | |
IcosahedralSym (const IcosahedralSym &) | |
Disallow copy construction. | |
IcosahedralSym & | operator= (const IcosahedralSym &) |
Disallow assignment. |
An icosahedron has m=5, n=3, F=20 E=30=nF/2, V=12=nF/m,since vertices shared by 5 triangles It is composed of 20 triangles. E=3*20/2 A dodecahedron has m=3, n=5 F=12 E=30 V=20 It is composed of 12 pentagons. E=5*12/2; V= 5*12/3, since vertices shared by 3 pentagons"
Definition at line 856 of file symmetry.h.
|
Constructor calls PlatonicSym::init.
Definition at line 861 of file symmetry.h. 00861 {init(); }
|
|
Definition at line 862 of file symmetry.h. 00862 { }
|
|
Disallow copy construction.
|
|
Get the azimuth alignment offset required to ensure that orientations align correctly with symmetric axes of the icosahedron. This offset is directly related to the way the symmetric operations are generated by get_sym. All orientations generated as a result of using the delimiters supplied by this class should by offset by this azimuth to ensure proper alignment with tetrahedral objects in EMAN2 Reimplemented from EMAN::Symmetry3D. Definition at line 1717 of file symmetry.cpp. Referenced by get_sym(). 01717 { return 234.0; } // This offset positions a 3 fold axis on the positive x axis
|
|
Get a description.
Implements EMAN::FactoryBase. Definition at line 880 of file symmetry.h. 00880 { return "Icosahedral symmetry support"; }
|
|
Gets the maximum symmetry of this object. This is used by OrientationGenerators, and is probably not something a general user would utilize.
Implements EMAN::Symmetry3D. Definition at line 886 of file symmetry.h. 00886 { return 5; }// 5 is the greatest symmetry
|
|
Return IcosahedralSym::NAME.
Implements EMAN::FactoryBase. Definition at line 875 of file symmetry.h. 00875 { return NAME; };
|
|
Gets the total number of unique roational symmetry operations associated with this symmetry For icosahedral symmetry, this is 60.
Implements EMAN::Symmetry3D. Definition at line 900 of file symmetry.h. 00900 { return 60; };
|
|
This function provides access to the unique rotational symmetries of an icosahedron. We have placed the icosahedral symmetry group with a face along the z-axis. In all, there are 60 (accessed by get_nysm) unique rotational symmetric operations for the icosahedron.
Implements EMAN::Symmetry3D. Definition at line 1719 of file symmetry.cpp. References get_az_alignment_offset(). 01720 { 01721 // These rotations courtesy of Phil Baldwin 01722 static double lvl0=0.; // there is one pentagon on top; five-fold along z 01723 static double lvl1= 63.4349; // that is atan(2) // there are 5 pentagons with centers at this height (angle) 01724 static double lvl2=116.5651; //that is 180-lvl1 // there are 5 pentagons with centers at this height (angle) 01725 static double lvl3=180.0; 01726 01727 static double ICOS[180] = { // This is with a pentagon normal to z 01728 0,lvl0,0, 0,lvl0,288, 0,lvl0,216, 0,lvl0,144, 0,lvl0,72, 01729 0,lvl1,36, 0,lvl1,324, 0,lvl1,252, 0,lvl1,180, 0,lvl1,108, 01730 72,lvl1,36, 72,lvl1,324, 72,lvl1,252, 72,lvl1,180, 72,lvl1,108, 01731 144,lvl1,36, 144,lvl1,324, 144,lvl1,252, 144,lvl1,180, 144,lvl1,108, 01732 216,lvl1,36, 216,lvl1,324, 216,lvl1,252, 216,lvl1,180, 216,lvl1,108, 01733 288,lvl1,36, 288,lvl1,324, 288,lvl1,252, 288,lvl1,180, 288,lvl1,108, 01734 36,lvl2,0, 36,lvl2,288, 36,lvl2,216, 36,lvl2,144, 36,lvl2,72, 01735 108,lvl2,0, 108,lvl2,288, 108,lvl2,216, 108,lvl2,144, 108,lvl2,72, 01736 180,lvl2,0, 180,lvl2,288, 180,lvl2,216, 180,lvl2,144, 180,lvl2,72, 01737 252,lvl2,0, 252,lvl2,288, 252,lvl2,216, 252,lvl2,144, 252,lvl2,72, 01738 324,lvl2,0, 324,lvl2,288, 324,lvl2,216, 324,lvl2,144, 324,lvl2,72, 01739 0,lvl3,0, 0,lvl3,288, 0,lvl3,216, 0,lvl3,144, 0,lvl3,72 01740 }; 01741 01742 int idx = n % 60; 01743 Dict d("type","eman"); 01744 // Transform3D ret; 01745 if (get_az_alignment_offset() == 234.0) { 01746 d["az"] =(float)ICOS[idx * 3 ]+90; 01747 d["alt"] = (float)ICOS[idx * 3 + 1]; 01748 d["phi"] = (float)ICOS[idx * 3 + 2]-90; 01749 // ret.set_rotation((float)ICOS[idx * 3 ]+90,(float)ICOS[idx * 3 + 1], (float)ICOS[idx * 3 + 2]-90); 01750 } 01751 else { 01752 d["az"] =(float)(float)ICOS[idx * 3 ]; 01753 d["alt"] = (float)ICOS[idx * 3 + 1]; 01754 d["phi"] = (float)ICOS[idx * 3 + 2]; 01755 // ret.set_rotation((float)ICOS[idx * 3 ],(float)ICOS[idx * 3 + 1], (float)ICOS[idx * 3 + 2]); 01756 } 01757 01758 // ret.set_rotation((float)ICOS[idx * 3 ],(float)ICOS[idx * 3 + 1], (float)ICOS[idx * 3 + 2]); 01759 // if ( get_az_alignment_offset() != 0 ) { 01760 // Transform3D t(get_az_alignment_offset(),0,0); 01761 // ret = t*ret; 01762 // } 01763 return Transform(d); 01764 01765 }
|
|
Factory support function NEW.
Definition at line 867 of file symmetry.h. 00868 { 00869 return new IcosahedralSym(); 00870 }
|
|
Disallow assignment.
|
|
The name of this class - used to access it from factories etc. Should be "icos".
Definition at line 45 of file symmetry.cpp. |