#include <processor.h>
Inheritance diagram for EMAN::TestImageFourierNoiseGaussian:
Public Member Functions | |
virtual void | process_inplace (EMData *image) |
To process an image in-place. | |
virtual string | get_name () const |
Get the processor's name. | |
virtual string | get_desc () const |
Get the descrition of this specific processor. | |
virtual TypeDict | get_param_types () const |
Get processor parameter information in a dictionary. | |
Static Public Member Functions | |
Processor * | NEW () |
Static Public Attributes | |
const string | NAME = "testimage.noise.fourier.gaussian" |
sigma | sigma value for this Gaussian blob |
Definition at line 5822 of file processor.h.
|
Get the descrition of this specific processor. This function must be overwritten by a subclass.
Implements EMAN::Processor. Definition at line 5832 of file processor.h. 05833 { 05834 return "Replace a source image with pink Fourier noise, based on a Gaussian. Random phase."; 05835 }
|
|
Get the processor's name. Each processor is identified by a unique name.
Implements EMAN::Processor. Definition at line 5827 of file processor.h. 05828 {
05829 return NAME;
05830 }
|
|
Get processor parameter information in a dictionary. Each parameter has one record in the dictionary. Each record contains its name, data-type, and description.
Reimplemented from EMAN::Processor. Definition at line 5842 of file processor.h. References EMAN::TypeDict::put(). 05843 { 05844 TypeDict d; 05845 d.put("sigma", EMObject::FLOAT, "sigma value"); 05846 return d; 05847 }
|
|
Definition at line 5837 of file processor.h. 05838 { 05839 return new TestImageFourierNoiseGaussian(); 05840 }
|
|
To process an image in-place. For those processors which can only be processed out-of-place, override this function to just print out some error message to remind user call the out-of-place version.
Implements EMAN::Processor. Definition at line 6583 of file processor.cpp. References EMAN::EMData::ap2ri(), EMAN::EMData::depad(), EMAN::EMData::do_ift_inplace(), EMAN::EMData::get_data(), EMAN::Util::get_frand(), EMAN::EMData::get_ndim(), EMAN::EMData::get_xsize(), EMAN::EMData::get_ysize(), EMAN::EMData::get_zsize(), EMAN::EMData::is_complex(), EMAN::length(), nx, ny, phase(), EMAN::EMData::process_inplace(), EMAN::EMData::ri2ap(), EMAN::EMData::set_complex(), EMAN::Dict::set_default(), EMAN::EMData::set_fftodd(), EMAN::EMData::set_fftpad(), EMAN::EMData::set_size(), sqrt(), x, and y. 06584 { 06585 if (!image->is_complex()) { 06586 int nx = image->get_xsize(); 06587 int offset = 2 - nx%2; 06588 06589 image->set_size(nx+offset,image->get_ysize(),image->get_zsize()); 06590 image->set_complex(true); 06591 if (1 == offset) image->set_fftodd(true); 06592 else image->set_fftodd(false); 06593 image->set_fftpad(true); 06594 } 06595 image->ri2ap(); 06596 06597 float sigma = params.set_default("sigma",.25f); 06598 06599 float * d = image->get_data(); 06600 int nx = image->get_xsize(); 06601 int ny = image->get_ysize(); 06602 int nxy = image->get_ysize()*nx; 06603 int nzon2 = image->get_zsize()/2; 06604 int nyon2 = image->get_ysize()/2; 06605 float rx, ry, rz, length, amp, phase; 06606 int twox; 06607 for (int z = 0; z< image->get_zsize(); ++z) { 06608 for (int y = 0; y < image->get_ysize(); ++y) { 06609 for (int x = 0; x < image->get_xsize()/2; ++x) { 06610 rx = (float)x; 06611 ry = (float)nyon2 - (float)y; 06612 rz = (float)nzon2 - (float)z; 06613 length = sqrt(rx*rx + ry*ry + rz*rz); 06614 amp = exp(-sigma*length); 06615 phase = Util::get_frand(0,1)*2*M_PI; 06616 06617 twox = 2*x; 06618 size_t idx1 = twox + y*nx+z*nxy; 06619 size_t idx2 = idx1 + 1; 06620 d[idx1] = amp; 06621 d[idx2] = phase; 06622 06623 } 06624 } 06625 } 06626 06627 image->ap2ri(); 06628 if (image->get_ndim() == 2) { 06629 bool yodd = image->get_ysize() % 2 == 1; 06630 06631 int yit = image->get_ysize()/2-1; 06632 int offset = 1; 06633 if (yodd) { 06634 offset = 0; 06635 } 06636 for (int y = 0; y < yit; ++y) { 06637 int bot_idx = (y+offset)*nx; 06638 int top_idx = (ny-1-y)*nx; 06639 float r1 = d[bot_idx]; 06640 float i1 = d[bot_idx+1]; 06641 float r2 = d[top_idx]; 06642 float i2 = d[top_idx+1]; 06643 float r = (r1 + r2)/2.0f; 06644 float i = (i1 + i2)/2.0f; 06645 d[bot_idx] = r; 06646 d[top_idx] = r; 06647 d[bot_idx+1] = i; 06648 d[top_idx+1] = -i; 06649 06650 bot_idx = (y+offset)*nx+nx-2; 06651 top_idx = (ny-1-y)*nx+nx-2; 06652 r1 = d[bot_idx]; 06653 i1 = d[bot_idx+1]; 06654 r2 = d[top_idx]; 06655 i2 = d[top_idx+1]; 06656 r = (r1 + r2)/2.0f; 06657 i = (i1 + i2)/2.0f; 06658 d[bot_idx] = r; 06659 d[top_idx] = r; 06660 d[bot_idx+1] = i; 06661 d[top_idx+1] = -i; 06662 } 06663 06664 d[1] = 0; // 0 phase for this componenet 06665 d[nx-1] = 0; // 0 phase for this component 06666 d[ny/2*nx+nx-1] = 0;// 0 phase for this component 06667 d[ny/2*nx+1] = 0;// 0 phase for this component 06668 } 06669 06670 if (image->get_ndim() != 1) image->process_inplace("xform.fourierorigin.tocorner"); 06671 image->do_ift_inplace(); 06672 image->depad(); 06673 }
|
|
Definition at line 191 of file processor.cpp. |