Introduction to Programming for Scientists

Lecture 1: Introduction & Datatypes

> Steven Ludtke N410 sludtke@bcm.edu

Course Details

- Meets Monday & Thursday
- Graded
 - 50% homework, 50% final project
 - Grading will be very lenient !
- No tests
- Homework due before each class via email
- Class lectures will be video-archived
- Blackboard (?)
- Names & email ! (<u>SLUDTKE@BCM.EDU</u>)

~Syllabus

- Lecture 1 Introduction, basic math, simple data storage
- Lecture 2 Program flow, statements, string manipulation
- Lecture 3 Reading & writing files, Python libraries
- Lecture 4 First 'real program', more standard libraries
- *Lecture 5 Debugging, review*
- Lecture 6 Filesystem, image manipulation
- Lecture 7 More images, plotting
- Lecture 8 Numpy, Scipy
- Lecture 9 Object oriented programming
- Lecture 10 Basic GUI Programming
- Lecture 11 More GUI Programming
- Lecture 12 Network Programming
- Lecture 13 More Network Programming

Survey

- Have a laptop ?
- Know how to use a spreadsheet (excel)?
- Formulas in spreadsheets ?
- Different operating systems ?
- Programming (any language)?

What is programming ?

The second for the second of the

What is programming ?

http://www-03.ibm.com/ibm/history/exhibits/storage/images/PH0305.jpg

IBM 305 RAMAC (ca. 1960)

ANT ANT TO THE OWNER OF TAATA AND

 $\mathsf{Z}(1) = \mathsf{Y} + \mathsf{W}(1)$

What is programming ?

8512 documented languages (vs. 2376)

- Four of the first modern languages (50s):
 - FORTRAN (FORmula TRANslator))
 - LISP (LISt Processor))
 - ALGOL
 - COBOL (COmmon Business Oriented Language)
- BASIC (1963 used in 70s-80s)
- C (1972)
- C++ (1983))
- Perl (1990)
- Python (1991)
- Ruby (1992)
- HTML (1994)
- Java (1995))

Python Reserved Words

Streed & . MA

and the second strategy

and	del		from	not	while	
as	elif		global	or	with	
assert	else		if	pass	yield	
break	excep	ot	import	print		
class	exec		in	raise		
continue	e final	ly	is	return		
def	for		lambda	try		
+	_	*				
* *	/	11	00	~		
<<	>>	&		^		
<	>	<=	>=			
==	! =	<>				
()	[]	{	}	9
,	:	•	`	=	;	
+=	_=	*=	/=	//=	%=	
&=	=	^=	>>=	<<=	**=	

The sector was the provide the sector of the sector

Python ?

PYTHON OOL- developed by Guido van Rossum, and named after Monty Python.(No one Expects the Inquisition) a simple high-level interpreted language. Combines ideas from ABC, C, Modula-3, and ICON. It bridges the gap between C and shell programming, making it suitable for rapid prototyping or as an extension of C. Rossum wanted to correct some of the ABC problems and keep the best features. At the time, he was working on the AMOEBA distributed OS group, and was looking for a scripting language with a syntax like ABC but with the access to the AMOEBA system calls, so he decided to create a language that was extensible; it is OO and supports packages, modules, classes, user-defined exceptions, a good C interface, dynamic loading of C modules and has no arbritrary restrictions.

www.python.org

Note: Python 3.0 is now available, but we will use Python 2.x since it is still more widely used

A Few Apps with Python Scripting

ABerth

Section " Fritze

Blender	3-D modeler, animation, post production (free)			
Gimp	Photoshop-like graphics editor (free)			
Chimera	Structural biology visualization (free)			
PyMol	Structural biology visualization (free)			
OpenOffice	MS Office clone by Sun (free)			
Maya	Professional 3-D Modeling and Animation			
Poser	3-D modeling of humans			
VTK	Visualization Toolkit (Scientific Visualization, free)			
Abaqus	Finite element modeling (free)			
EMAN	Cryo-EM Image Processing (free)			
Phenix	X-ray crystallography toolkit (free)			
SciPy	Wide range of science/math tools in python (free)			
BioPython	Bioinformatics toolkit for Python (free)			

The A Set was to manufacture

Installing Python

- Mac OSX Included
- Linux Included
- Windows
 - Download from <u>www.python.org</u>
 - Run installer

Installing ipython

http://ipython.scipy.org

- *Linux use your package manager*
- Mac: (if you use fink or macports, use that instead) sudo easy_install ipython sudo easy_install readline
- Windows:

<u>http://ipython.scipy.org/dist/ipython-0.10.1.win32-setup.exe</u> run the installer

Demo Outline

ABALA

- Python as a calculator
- *math import*
- *Variables*, a=a+1
- strings, math, slicing
- *lists/tuples*
- set
- dictionaries
- boolean
- None

Numbers

- integers
 - 32-bit (-2,147,483,647 2,147,483,648)
 - long effectively unlimited
- floating point
 - 64-bit (15 significant figs, <10³⁰⁸)
- complex
 - ∘ 5.0+3.0j

'string' "also a string" """This too but this one can span lines""" "A"+" test" "A test"

Lists

```
[item1,item2,item3,...] # items can be anything
a = [0, 1, 2, 3, 4, 5, 6]
                         # A list of 7 numbers
                             # nth element in list
a[n]
                              # sublist elements n to m-1
a[n:m]
                             # nth item from the end
a[-n]
a[3] -> 3
a[1:4] \rightarrow [1,2,3]
a[-2] -> 5
a[2:-2] \rightarrow [2,3,4]
a[2] = "x" \rightarrow [0, 1, "x", 3, 4, 5, 6]
tuples: a=(0,1,2,3,4,5,6) # tuples are immutable
a[3] -> 3
a[3]=5 \rightarrow ERROR!
```

Resources

- <u>www.python.org</u>
 - o http://docs.python.org/tutorial/
- pypi.python.org
- www.scipy.org

Homework 1

- Install python and (optionally) ipython
- *Familiarize yourself with the documentation at <u>www.python.org</u> (Python 2.6 or 2.7)*
- Consider each of the following statements. Try to decide what result each statement will produce, then enter it at the python prompt and check yourself:
- 1) a="18" b="5" int(a+b)/3
- 2) 1/2+1.0/2
- 3) int('9'*3)+1
- 4) sin(pi)+1
- 5) [1,2,3,4,5][2]

Email me the answers just to demonstrate that you did it...