Differences between revisions 6 and 20 (spanning 14 versions)
Revision 6 as of 2009-10-05 15:16:41
Size: 6683
Editor: SteveLudtke
Comment:
Revision 20 as of 2010-12-17 13:54:48
Size: 1564
Editor: SteveLudtke
Comment:
Deletions are marked like this. Additions are marked like this.
Line 4: Line 4:
environment. Unfortunately, as of May, 2009, the parallelism infrastructure is just beginning to come together. This should be gradually fleshed out over
2009. At the moment, only one parallelism infrastructure is fully functional.
environment. We now support 3 distinct methods for parallelism, and each has its own page of documentation. Please follow the appropriate link:
Line 7: Line 6:
Programs with parallelism support will take the --parallel command line option as follows:

--parallel=<type>:<option>=<value>:<option>=<value>:...

for example, for the distributed parallelism model: ''--parallel=dc:localhost:9990''

=== GPGPU Computing ===
While not precisely a parallelism methodology, this technique makes use of the GPU (graphics processing unit) common in most modern PC's, to dramatically
accelerate many image processing algorithms. At present (summer 2009) we are at the initial stages of implementing GPGPU support using Nvidia's CUDA
infrastructure. We will likely move to OpenCL in future as it becomes a stable platform. We have only implemented a few algorithms using this methodology
to date, and we will need to implement and optimize virtually all of them before this becomes a viable platform for day-to-day use. However, we have demonstrated
speedups of as much as 100x in select algorithms, meaning a desktop PC with a GPU could easily become the equivalent of a small Linux cluster. While all of
the GPGPU code is available in the nightly source snapshots, you are encouraged to contact sludtke@bcm.edu if you are interested in experimenting with this
technology.

=== Local Machine (multiple cores) ===
Not yet implemented, please use Distributed Computing

=== Distributed Computing ===

==== Introduction ====
This is the sort of parallelism made famous by projects like SETI-at-home and Folding-at-Home. The general idea is that you have a list of small jobs to do,
and a bunch of computers with spare cycles willing to help out with the computation. The number of computers willing to do computations may vary with time, and
possibly may agree to do a computation, but then fail to complete it. This is a very flexible parallelism model, which can be adapted to both individual computers
with multiple cores as well as linux clusters, or sets of workstations laying around the lab.

There are 3 components to this system:

User Application (customer) <==> Server <==> Compute Nodes (client)

The user application builds a list of computational tasks that it needs to have completed, then sends the list to the server. Compute nodes with nothing to do then
contact the server and request tasks to compute. The server sends the tasks out to the clients. When the client finishes the requested computation, results are sent
back to the server. The user application then requests the results from the server and completes processing. As long as the number of tasks to complete is larger than the
number of clients servicing requests, this is an extremely efficient infrastructure.

Internally things are somewhat more complicated and tackle issues such as data caching on the clients, how to handle clients that die in the middle of processing, etc., but
the basic concept is quite straightforward.

With any of the e2parallel.py commands below, you may consider adding the --verbose=1 option to see more of what it's doing.

==== How to use Distributed Computing in EMAN2 ====
To use distributed computing, there are three basic steps:
 * Run a server on a machine that the clients can communicate with
 * Run some number of clients pointing at the server
 * run an EMAN2 program with the --parallel option

What follows are specific instructions for doing this under 3 different scenarios.

===== Using DC on a single multi-core workstation =====
 * Ideally your data will be stored on a hard drive physically connected to the workstation (not on a shared network drive)
 * make an empty directory on a local hard drive
 * Run a server on the workstation ''e2parallel.py dcserver'' from the empty directory you just created
 * The server will print a message saying what port it's running on. This will usually be 9990. If it is something else, make a note of it.
 * Run one client for each core you want to use for processing : ''e2parallel.py dcclient --server=localhost --port=9990'' (replace the port with the correct number if necessary)
 * Run your EMAN2 programs with the option ''--parallel=dc:localhost:9990'' (again, use the right port number)

===== Using DC on a linux cluster =====
 * The server should run on the node (often the head node or a specialized 'storage node') with a direct physical connection to the storage
 * If you want to use clients from multiple clusters, then remember all of the clients must be able to make a network connection to the server machine
 * Run a server on the head-node ''e2parallel.py dcserver'' in an empty directory on the local hard drive
 * The server will print a message saying what port it's running on. This will usually be 9990. If it is something else, make a note of it.
 * Run one client for each core you want to use for processing on each node : ''e2parallel.py dcclient --server=<server> --port=9990'' (replace the server hostname and port with the correct values)
 * Run your EMAN2 programs with the option ''--parallel=dc:<server>:9990'' (again, use the right port number and server hostname)

===== Using DC on a set of workstations =====
 * The server should run on a computer with a direct physical connection to the storage
 * All of the clients must be able to make a network connection to the server machine
 * Run a server on the desired machine ''e2parallel.py dcserver'' in an empty directory on the local hard drive
 * The server will print a message saying what port it's running on. This will usually be 9990. If it is something else, make a note of it.
 * Run one client for each core you want to use for processing on each computer : ''e2parallel.py dcclient --server=<server> --port=9990'' (replace the server hostname and port with the correct values)
 * Run your EMAN2 programs with the option ''--parallel=dc:<server>:9990'' (again, use the right port number and server hostname)

For all of the above, once you have finished running your jobs, kill the server, then run 'e2parallel.py dckillclients' from the same directory.
When it stops spewing out 'client killed' messages, you can kill this server.

=== MPI ===
Sorry, we haven't had a chance to finish this yet. For the moment you will have to use the Distributed Computing mode on clusters.
 * [[EMAN2/Parallel/Threaded|Threaded]] - This is for use on a single computer with multiple processors (cores). For example, the Core2Duo processors of a few years ago had 2 cores. In 2010, individual computers often have single or dual processors with 2, 4 or 6 cores each, for a total of up to 12 cores. EMAN2 can make very efficient use of all of these cores, but this mode will ONLY work if you want to run on a single computer.
 * [[EMAN2/Parallel/Mpi|MPI]] - This is the standard parallelism method used on virtually all large clusters nowadays. It will require a small amount of custom installation for your specific cluster, even if you are using a binary distribution of EMAN2. Follow this link for more details
 * [[EMAN2/Parallel/Distributed|Distributed]] - This was the original parallelism method developed for EMAN2. It can be used on anything from sets of workstations to multiple clusters, and can dynamically change how many processors it's using during a single run, allowing you, for example, to make use of idle cycles at night on lab workstations, but reduce the load during the day for normal use. It is very flexible, but requires a bit of effort, and a knowledgeable user to configure and use.

Parallel Processing in EMAN2

EMAN2 uses a modular strategy for running commands in parallel. That is, you can choose different ways to run EMAN2 programs in parallel, depending on your environment. We now support 3 distinct methods for parallelism, and each has its own page of documentation. Please follow the appropriate link:

  • Threaded - This is for use on a single computer with multiple processors (cores). For example, the Core2Duo processors of a few years ago had 2 cores. In 2010, individual computers often have single or dual processors with 2, 4 or 6 cores each, for a total of up to 12 cores. EMAN2 can make very efficient use of all of these cores, but this mode will ONLY work if you want to run on a single computer.

  • MPI - This is the standard parallelism method used on virtually all large clusters nowadays. It will require a small amount of custom installation for your specific cluster, even if you are using a binary distribution of EMAN2. Follow this link for more details

  • Distributed - This was the original parallelism method developed for EMAN2. It can be used on anything from sets of workstations to multiple clusters, and can dynamically change how many processors it's using during a single run, allowing you, for example, to make use of idle cycles at night on lab workstations, but reduce the load during the day for normal use. It is very flexible, but requires a bit of effort, and a knowledgeable user to configure and use.

EMAN2/Parallel (last edited 2023-04-15 02:03:25 by SteveLudtke)