5575
Comment:
|
6195
|
Deletions are marked like this. | Additions are marked like this. |
Line 1: | Line 1: |
= EMAN2.2 = | = EMAN2.22 = |
Line 4: | Line 4: |
EMAN2 is the successor to [[EMAN1]]. It is a broadly based greyscale scientific image processing suite with a primary focus on processing data from transmission electron microscopes. EMAN's original purpose was performing single particle reconstructions (3-D volumetric models from 2-D cryo-EM images) at the highest possible resolution, but the suite now also offers support for single particle cryo-ET, and tools useful in many other subdisciplines such as helical reconstruction, 2-D crystallography and whole-cell tomography. EMAN2 is capable of processing very large data sets (>100,000 particle) very efficiently (up to 20x faster than EMAN1). | EMAN2 is the successor to [[EMAN1]]. It is a broadly based greyscale scientific image processing suite with a primary focus on processing data from transmission electron microscopes. EMAN's original purpose was performing single particle reconstructions (3-D volumetric models from 2-D cryo-EM images) at the highest possible resolution, but the suite now also offers support for single particle cryo-ET, and tools useful in many other subdisciplines such as helical reconstruction, 2-D crystallography and whole-cell tomography. EMAN2 is capable of processing very large data sets (>100,000 particle) very efficiently. |
Line 18: | Line 18: |
* Galaz-Montoya, J.G., Flanagan, J., Schmid, M.F. and Ludtke, S.J., 2015. Single particle tomography in EMAN2. Journal of structural biology, 190(3), pp.279-290. | |
Line 19: | Line 20: |
Line 23: | Line 23: |
* [[http://ncmi.bcm.tmc.edu/ncmi/software/software_details?selected_software=counter_222|Main EMAN2 Binary Download Page]] * [[https://github.com/cryoem/eman2|Source code from GitHub]] |
* [[http://cryoem.bcm.edu/cryoem/downloads/view_eman2_versions|Download EMAN2]] (binaries) * [[http://github.com/cryoem/eman2|Download EMAN2]] (source code) |
Line 27: | Line 27: |
* [[EMAN2/Install|Installation Instructions and Tips]] (binary and source) * [[EMAN2/Remote|Strategies for using the GUI remotely (clusters or remote workstations)]] |
* [[EMAN2/Install|Installation Guides]] (binary and source) * [[EMAN2/Remote|EMAN2 Remote GUI use (for clusters and remote workstations)]] == Get Help == We prefer to provide assistance via the Google group below, since this archives all discussions and makes them searchable. You must join the group to post, but can browse old content anonymously. * http://groups.google.com/group/eman2 (Main discussion list for EMAN2) * http://groups.google.com/group/eman2-developers (Discussions among developers, likely less interesting for users) * [[EMAN2/FAQ|FAQ]] - Please ask your questions in the Google Group which has a searchable archive. This page is somewhat out of date * NOTE - If you are located in a country that blocks Google (China) or prefer not to post publicly, please feel free to email sludtke@bcm.edu directly. The Google Group is used because it creates a persistent searchable archive of past questions, but direct emails are completely acceptable. |
Line 31: | Line 38: |
* Live Tutorials * Past video tutorials: [[https://www.youtube.com/c/SteveLudtke]] |
* Tutorials * [[https://www.youtube.com/c/SteveLudtke|YouTube Tutorials]] (Archived video tutorials and mini-tutorials) * [[EMAN2/Tutorials|Tutorials]] (Full PDF tutorials with data covering many different tasks) |
Line 34: | Line 42: |
* [[EMAN2/Tutorials|Tutorials (START HERE!)]] * [[EMAN2/DirectoryStructure|Folders and files in an EMAN2 Project]] * [[EMAN2/Concepts|File Formats, Symmetry, Box Size, ...]] * [[EMAN2/Programs|Individual Program Documentation]] * [[EMAN2/Parallel|Parallel Computing (multiple cores, linux clusters, sets of workstations)]] |
* [[EMAN2/DirectoryStructure|File Descriptions]] (Folders and files in an EMAN2 Project) * [[EMAN2/Concepts|Standards]] (File Formats, Symmetry, Box Size, etc.) * [[EMAN2/Programs|Programs]] (Individual Program Documentation) * [[EMAN2/Parallel|Clusters]] (Running EMAN2 on clusters and multi-core workstations) * [[EMAN2/Gpu|GPGPU Computing]] (use the graphics processor for image processing) * [[EMAN2/Galleries|Galleries]] |
Line 40: | Line 49: |
* [[EMAN2/Gpu|GPGPU Computing (use the graphics processor for image processing)]] * [[EMAN2/Galleries|Galleries]] * [[EMAN2/Obsolete|Obsolete Pages]] * Advanced Users & Programmers * [[EMAN2/Library|Python/C++ Programmers Documentation]] * [[http://blake.grid.bcm.edu/eman2/doxygen_html/classEMAN_1_1EMData.html|Direct link to docs for EMData (image) class]] * [[http://blake.grid.bcm.edu/eman2/doxygen_html/classEMAN_1_1Transform.html|Direct link to docs for Transform (orientation/Euler angle) class]] * [[EMAN2/GitTutorials|Transitioning from CVS to Git (under construction)]] * [[EMAN2/FAQ|FAQ]] - Please ask your questions in the Google Group, answers to common questions will be posted here as well as in the Group * Mailing list for EMAN2 discussions: * http://groups.google.com/group/eman2 * eman2@googlegroups.com (must join the group before you can post) * http://groups.google.com/group/eman2-developers (This is the group for discussions among developers, likely less interesting for users) |
* [[EMAN2/Obsolete|Old Docs]] (Out of date documentation) == Advanced Users & Programmers (Python) == * [[EMAN2/GitTutorials|GitHub (Transitioning from CVS to Git)]] * [[EMAN2/Library|Python/C++ Programmers Documentation]] * [[http://blake.grid.bcm.edu/eman2/doxygen_html/classEMAN_1_1EMData.html|Direct link to docs for EMData (image) class]] * [[http://blake.grid.bcm.edu/eman2/doxygen_html/classEMAN_1_1Transform.html|Direct link to docs for Transform (orientation/Euler angle) class]] |
EMAN2.22
Most of the pages are editable by any user that has registered an account on the server. To prevent spam, you need to email sludtke@bcm.edu to get an account on the system if you wish to contribute changes. If you just wish to browse, you don't need an account.
EMAN2 is the successor to EMAN1. It is a broadly based greyscale scientific image processing suite with a primary focus on processing data from transmission electron microscopes. EMAN's original purpose was performing single particle reconstructions (3-D volumetric models from 2-D cryo-EM images) at the highest possible resolution, but the suite now also offers support for single particle cryo-ET, and tools useful in many other subdisciplines such as helical reconstruction, 2-D crystallography and whole-cell tomography. EMAN2 is capable of processing very large data sets (>100,000 particle) very efficiently.
Please also note that this is not the (related) EMEN2 electronic notebook, but is EMAN2, a scientific image processing suite.
Please Cite
EMAN is free software, supported by NIH Grants. It is critical that you cite EMAN2 when you use it in a publication in any significant way, to help us document usage when trying to renew our funding. Feel free to cite any of these:
Primary EMAN2 paper:
G. Tang, L. Peng, P.R. Baldwin, D.S. Mann, W. Jiang, I. Rees & S.J. Ludtke. (2007) EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol. 157, 38-46. PMID: 16859925
EMAN2 high resolution refinement methods:
J.M. Bell, M. Chen, P.R. Baldwin & S.J. Ludtke. (2016) High Resolution Single Particle Refinement in EMAN2.1. Methods. 100, 25-34. PMC4848122
Methods for analysis of conformational and compositional variability:
- Ludtke, S. J. "Single-Particle Refinement and Variability Analysis in EMAN2.1." in Methods Enzymol 579159-189 (Elsevier, United States, 2016). PMC5101015
Methods for subtomogram averaging:
- Galaz-Montoya, J.G., Flanagan, J., Schmid, M.F. and Ludtke, S.J., 2015. Single particle tomography in EMAN2. Journal of structural biology, 190(3), pp.279-290.
J.G. Galaz-Montoya, C.W. Hecksel, P.R. Baldwin, E. Wang, S.C. Weaver, M.F. Schmid, S.J. Ludtke & W. Chiu. (2016) Alignment algorithms and per-particle CTF correction for single particle cryo-electron tomography. J Struct Biol. 194, 383-394. PMC4846534
Download EMAN2
Download EMAN2 (binaries)
Download EMAN2 (source code)
Install EMAN2
Installation Guides (binary and source)
Get Help
We prefer to provide assistance via the Google group below, since this archives all discussions and makes them searchable. You must join the group to post, but can browse old content anonymously.
http://groups.google.com/group/eman2 (Main discussion list for EMAN2)
http://groups.google.com/group/eman2-developers (Discussions among developers, likely less interesting for users)
FAQ - Please ask your questions in the Google Group which has a searchable archive. This page is somewhat out of date
NOTE - If you are located in a country that blocks Google (China) or prefer not to post publicly, please feel free to email sludtke@bcm.edu directly. The Google Group is used because it creates a persistent searchable archive of past questions, but direct emails are completely acceptable.
Documentation
- Tutorials
YouTube Tutorials (Archived video tutorials and mini-tutorials)
Tutorials (Full PDF tutorials with data covering many different tasks)
- User Documentation
File Descriptions (Folders and files in an EMAN2 Project)
Standards (File Formats, Symmetry, Box Size, etc.)
Programs (Individual Program Documentation)
Clusters (Running EMAN2 on clusters and multi-core workstations)
GPGPU Computing (use the graphics processor for image processing)
Old Docs (Out of date documentation)
Advanced Users & Programmers (Python)
About EMAN2
EMAN2 is the successor to EMAN1. It is a broadly based greyscale scientific image processing suite with a primary focus on processing data from transmission electron microscopes. EMAN's original purpose was performing single particle reconstructions (3-D volumetric models from 2-D cryo-EM images) at the highest possible resolution, but the suite now also offers support for single particle cryo-ET, and tools useful in many other subdisciplines such as helical reconstruction, 2-D crystallography and whole-cell tomography. Image processing in a suite like EMAN differs from consumer image processing packages like Photoshop in that pixels in images are represented as floating-point numbers rather than small (8-16 bit) integers. In addition, image compression is avoided entirely, and there is a focus on quantitative analysis rather than qualitative image display.
All EMAN2 programs, including GUI programs, are written in the easy-to-learn Python scripting language. This permits knowledgeable end-users to customize any of the code with unprecedented ease. If you aren't an advanced user, you can still make use of the integrated GUI and all of EMAN2's command-line programs.