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Outline

• Electron interactions
• Imaging theory
• Why are images not perfect?
• Analysis of cryo-EM data
• Future directions
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From Ernst Ruska’s Nobel lecture (1986) and 
the nobelprize.org website.

Essentially, the electron microscope was 
developed out of work aimed at a efficient 
electron cathode-ray oscillograph under Ing. 
Max Knoll.

Early design by Ernst Ruska

1931
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First electron image

Wings of house fly
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Electron Interactions with 
specimen

• Elastic
• Inelastic
• None

J. Mansfield, U Michigan
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Elastic interaction

• Mean free path – larger at higher kV
• Single scattering event (kinematic)

• Angular dependency
• Most of the electrons are scattered over 

large angles
• Go either through the OL aperture (phase 

contrast) or are blocked (aperture contrast)
• Without phase contrast, cryo-EM is not 

possible
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Inelastic scattering

• All electrons that lose energy while 
interacting with the specimen:
• Absorbance (EELS)
• X-rays (EDS)
• Other electrons (Auger)
• Other processes (phonons, plasmons)
• Radiation damage

NCMI Cryo-EM Workshop 2006 JEOL

Inelastic scattering I

• Beam damage:
• Radiolysis

• chemical bond breakage, free radical formation
• loss of resolution
• beam-induced motion

• Knock-on damage
• direct displacement of atoms by high energy 

electron
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• Typical exposure requires 20 
electrons/Å2 on the specimen

• Equivalent to 107 – 108 rad in terms of 
radiation dose

• No biological specimen can survive this 
exposure

• Limited beneficial effect of lower 
specimen temperatures

Inelastic scattering II
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Imaging Techniques in cryo-TEM

tiltaxis

photo mode
focus mode

search mode

• Low intensity search 
mode, < 0.01 e/Å2/s

• Off-axis focus mode 
w. high intensity 50-
100 e/Å2/s

• Record mode w. 
beam blanking on 
film/CCD
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KLH in amorphous ice
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Wave Theory in EM

Weak phase approx.

Aberration function

Diffraction description

Image description
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Image Contrast

Ber. Bunsen-Gesell. (1970) 74(11), 1129-1137
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300 kV Image     Power Spectrum

Also known as Thon rings
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What does a diff. pattern reveal?
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What does a diff. pattern reveal?
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Specimen’s structure factor

Conveniently obtained from X-ray solution scattering data, e.g. 1D scattering plots 
of HSV-1, p22, or (with some pain) from electron diffraction patterns
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Structure Factor
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Structure factor from carbon film from 300 kV electron diffraction
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What does a diff. pattern reveal?
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Contrast Transfer Function

Oscillatory function describing the level of contrast of a particular 

spatial frequency
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Contrast Transfer Function

))(cos()(sin(1 2
sQsQCTF χχ −−=

)
24

(2)(
243

sZsC
s s λλ

πχ
∆

+−=

NCMI Cryo-EM Workshop 2006 JEOL

Contrast Transfer Function

• CTF-explorer (Max Sidorov)
• example: JEOL 3200FSC
∆Z = 1.0 µm, Cs 4.1mm, Cc 3.4 mm

∆E = 0.7eV
α = 0.06 mrad
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What does a diff. pattern reveal?
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Total Envelope Function
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Envelope Functions

• Decay in the power spectrum due to 
coherence limitations:
• Spatial – ∝ illumination angle
• Temporal – ∝ energy spread

• Can also be caused by “environmental 
factors”:
• Drift from the holder
• Acoustic coupling of the cryo-holder
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Envelope Functions II

• Guassian type source:

• α dominates total envelope at ∆Z ≥ 0.5 µm

• Guassian type fluctuations:
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Envelope Functions III

• Guassian type fluctuations :

• Sinosoidal type fluctuations:

• Drift:
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What does a diff. pattern reveal?
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Total noise component

From a variety of sources (Gaussian, exponential, other). Some difference has 

been observed between energy-filtered and unfiltered data.
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JEOL3000SFF, ∆Z = 0.97 µm
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Structure at various resolutions

Low Resolution High Resolution

Size
Shape Side chains

6 Å9 Å

Medium Resolution 2BTV VP3A

Strands
Connectivity

15+ Å <4 Å

Helices
Beta sheetsDomains
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Resolution

Appl. Physics (1949) 20, 20-29

Theorem: Chromatic and spherical aberrations are unavoidable for rotationally 
symmetric lenses. In addition, all aberrations add in quadrature, meaning one 
cannot combine lenses with suitable aberrations to cancel them in an attempt to 

pursue higher resolution.
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Aberrations I

• Spherical aberration
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Aberrations II

• Chromatic 
aberration
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New directions

• Resolution limitations:
• Lenses
• Specimen
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New directions II

• Resolution limitations & goals:
• Lenses – make them better
• Specimen – make it less susceptible
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New directions III

• Resolution limitations & fixes:
• Lenses – Cs correctors, phase plates
• Specimen – spot-scan imaging, conductivity
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Are correctors useful for cryo-EM?
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Cs Correctors 

Cs correctors are used with TEM and STEM. There is a 
separate corrector for each imaging mode. The object of 
the corrector is to eliminate or greatly reduce spherical 
aberration.
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Principle of the Cs corrector

D.B. Williams & C.B. Carter,
Transmission Electron Microscopy (1996) pg. 469
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Uncorrected

Effect of Cs correction

Corrected

Beam tilt of 18 mrad
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View from control 
room into 
instrument room

ACEM at ORNL
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Cs Correctors in Biology I

• Current interest focused on sub-
10 Å.

• Specimen are low Z elements 
requiring large defocus for 
imaging.

• Extensive ringing in phase CTF

0.1 µm

0.5 µm

2100F; UHR p/p

0.5 µm
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Cs Correctors in Biology II

• With Cs corrector the point 
resolution goes towards 
information limit.

• Also, larger p/p gap is possible 
thus allowing for environmental 
cells.

• No penalty for tilted illumination 
since coma is absent, thus 
allowing for “optical sectioning”

• Loss of contrast at low resolution 
can be compensated with phase 
plate.

point res. Info limit

dF=14nm, Cs=0.5mm

dF=14nm, Cs=0.005mm
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Different Phase Plates

• Zernike phase plate – carbon film on BFP, small 
hole for the unscattered, direct beam

• Boersch phase plate or Einsellens – device in 
BFP w. floating inner ring at elevated potential

• Provides in-focus phase contrast, with increased 
transfer of lower spatial frequencies.

• Very suitable for frozen-hydrated specimens.
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Zernike Phase Plate

Phase plate

Conventional,
0.5 µm underfocus

Negatively-stained 
ferritin

Conventional,
2.5 µm underfocus

Conventional,
0.1 µm underfocus

Danov & Nagayama, Ultramicroscopy (2001) 90:85-89 
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Boersch Phase Plate

• Proposed in 1947
• Actively researched by Schröder

@ MPG & Glaeser @ LBL

Glaeser
Schröder
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Specimen-related Limitations

• Charging:
• SE emission
• Very noticeable with tilted specimens

• Beam-induced specimen movement
• Image amplitudes are only 1-10% of the 

theoretical values (Henderson & Glaeser)
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Specimen-related Limitations II

• Charging:
• Adjust beam size carefully (Unwin)
• Carbon-coat specimen (Glaeser, Brink)
• BFP OLA
• New support films, e.g. TiSi alloys

• Beam-induced specimen movement
• Spot-scan imaging technique
• Higher kV (Brink & Chiu)
• Sturdier support films ?
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