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The Plan
(Monday and Tuesday)

This afternoon and all day tomorrow will be 
in the computer classroom. No lectures in the 
lecture hall tomorrow morning.

Prasad, BVV, and Ludtke, S.J. Advances in Protein 
Chemistry and Structural Biology. Volume 82. 
Recent Advances in Electron Cryomicroscopy, Part 
A. Elsevier, Inc. Dec 2010.

Prasad, BVV, and Ludtke, S.J. Advances in Protein 
Chemistry and Structural Biology. Volume 82. 
Recent Advances in Electron Cryomicroscopy, Part 
B. Elsevier, Inc. May 2011.
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Unit Refresher
(orders of magnitude)

• 1 Angstrom (Å) = 0.1 nm ~ size of an atom (C-C bond ~1.4 Å)

• 10 Å = 1 nm ~ diameter of an alpha helix

• 100 Å = 10 nm ~ size of typical proteins

• 1000 Å = 100 nm ~ size of a typical virus particle

• 10,000 Å = 1 μm ~ size of prokaryotic cell

• 100,000 Å = 10 μm ~ size of a eukaryotic cell

• <3 Å resolution required in x-ray crystallography for a protein 
backbone trace

3mm

65 µm

4

5

6
Monday, July 9, 12



~1 µm

1000 Å
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300 Å

>100 mDa

300 Å

~1 mDa

300 Å

<100 kDa
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100 Å
200,000 kDa

800 kDa
50 kDa

1 μm

TEM Techniques

Single Particle Reconstruction

2-D Crystallography

Helical Reconstruction

Electron Tomography
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TEM Techniques

Single Particle Reconstruction

Requirements for 
Single Particle Analysis

Requirements for 
Single Particle Analysis

• Soluble, monodisperse
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Requirements for 
Single Particle Analysis

• Soluble, monodisperse
• ~20 µl @ 0.1 – 1 mg/ml (makes ~4 grids)
• Bigger is better (>150 kDa)
• High purity 95%+, 99% is better
• Buffer is important 

• eliminate glycerol
• low detergent concentration

• Labeling (antibodies, nanogold)
• In theory, 1 grid+1 day ➞ < 1nm resolution

• In practice …
• <4 Å resolution possible (~8-12 Å more common)

Single Particle Processing

Image Acquisition

Particle Picking

2-D Analysis

Symmetry/Low Resolution Model

Determine CTF Parameters

High Resolution Refinement

Post-processing

Dynamics Analysis

300 Å

~1 mDa

Particle Picking
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300 Å

~1 mDa

Particle Picking

Particle Picking

manual or semi-automated process

False positives are very dangerous, but also 
beware of excluding views you weren’t expecting

2-D Analysis

Even if you know the quaternary structure, still 
worthwhile. May be surprises.

At least 1000-2000 particles with uniform orientation 
distribution, perhaps fewer if symmetry or preferred 
orientation
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+ αβSR398 GroES + à

GroEL, GroES & Substrate

Multi-component Systems

SR398
SR398

GroES

SR398

GroES

Produces a Mixed Population

SR398

GroES

αβ

αβ

αβ

SR398+GroES+ATP

23

24

25
Monday, July 9, 12



Particles

2-D Refinement

Particles

2-D Refinement

Particles

2-D Refinement

Align
Particles
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Particles

2-D Refinement

Align
Particles

SVD/PCA

Particles

2-D Refinement

Align
Particles

SVD/PCA

k-means
classification in
SVD subspace

Particles

2-D Refinement

Align
Particles

SVD/PCA

k-means
classification in
SVD subspace
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Particles

2-D Refinement

Align
Particles

SVD/PCA

k-means
classification in
SVD subspace

Particles

2-D Refinement

After 9 iterations

Align
Particles

SVD/PCA

k-means
classification in
SVD subspace

100 Å
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Dynamics/Heterogeneity

After separating particles into different views:

Statistical analysis (bootstrapping, MSA) to locate 
regions of motion/heterogeneity

Classify particles in a single orientation to make 
pseudo-time movies

Multiple model 3-D refinement

MSA in 2-D

100 Å

MSA in 2-D

100 Å
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Synthesizes saturated hydrocarbon chains
Homo-dimer, ~500 kDa
7 Enzymatic activities
Obesity
Cancer

Highly expressed in most tumors

Particularly important in breast and prostate cancer

FAS inhibitors can prevent tumor growth

Fatty Acid Synthase

4.5 Å X-ray Structure

T. Maier, S. Jenni and N. Ban.  (2006) Science 311:1258 - 1262
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Average Top View
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Dynamics
Closed 
MMCPN

open 
MMCPN
Δlid

TO
P

SI
DE

FAS 

100 Å

Symmetry / Initial Model

Biochemical clues to symmetry ?

May be obvious from 2-D refinement

Double-check with quick, low resolution 3-D 
refinements

If still ambiguous, may need better data or 
tomography
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3-D Reconstruction

Iterative (automated) process

Start with particles and an initial ‘guess’ at the 3-D 
structure

The ‘guess’ need not be very good

GroEL

~800 kDA 

homo 14-mer

Type 1 chaperonin (GroES co-chaperonin)

Several crystal structures available

Initial 3D 
Model

Uniform 
Projections

Build New 3D 
Model

Final 3D 
Model

Align and 
Average 
Classes

Classify 
Particles

Particle 
Images
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Initial 3D 
Model

Uniform 
Projections

Build New 3D 
Model

Final 3D 
Model

Align and 
Average 
Classes

Classify 
Particles

Particle 
Images
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Projections

Build New 3D 
Model
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Model

Align and 
Average 
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Classify 
Particles

Particle 
Images

Initial 3D 
Model

Uniform 
Projections

Build New 3D 
Model

Final 3D 
Model

Align and 
Average 
Classes

Classify 
Particles

Particle 
Images
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Initial 3D 
Model

Uniform 
Projections

Build New 3D 
Model

Final 3D 
Model

Align and 
Average 
Classes

Classify 
Particles

Particle 
Images

Refine from Gaussian Ellipsoid

Iteration 1
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Iteration 2

Iteration 3

Iteration 4
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Iteration 5

10 Å

Postprocessing

10 – 20 Å

dock Xtal structures / homology models of 
components 

5 – 10 Å

Secondary structure analysis

< 5 Å

Backbone tracing, atomistic models
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Initial 3D 
Model

Uniform 
Projections

Build New 
3D Model

Final 3D 
Model

Align and 
Average 
Classes

Classify 
Particles

Particle 
Images

Initial 3D 
Model

Uniform 
Projections

Build New 
3D Model

Final 3D 
Model

Align and 
Average 
Classes

Classify 
Particles

Particle 
Images

Determine 
Particle 

Orientation

?

Initial 3D 
Model

Uniform 
Projections

Build New 
3D Model

Final 3D 
Model

Align and 
Average 
Classes

Classify 
Particles

Particle 
Images

Orientation 
of Average
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Initial 3D 
Model

Uniform 
Projections

Build New 
3D Model

Final 3D 
Model

Align and 
Average 
Classes

Classify 
Particles

Particle 
Images

Global 
Minimization

3D Model

Particles Classify
Particles

Class Avg.

3D Model

Projections

Projections

3D Model

3D Model 3D Model

3D Model

Projections

Class Avg.

Class Avg.

Multireference Refinement

SR398 heptamer
with no GroES 

Standard
Conformation

Expanded
Conformation 

SR398+GroES+Mg-ATP

Top
View

Side
View

Side
View

of Half
Map

Central
Slice

of Side
View
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Top
View

Side
View

Side
View

of Half
Map

SR398 heptamer
with no GroES 

Standard
Conformation

Expanded
Conformation 

Central
Slice

of Side
View

SR398+GroES+Mg-ATP

With
Substrate

MMCPN

Type 2 Chaperonin (built in lid)

Archaeal analog of (mammalian)TriC/CCT

Homo 16-mer

(Mammalian TriC has 8 different subunits)
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