

Sasakthi Abeysinghe¹ · Stephen Schuh¹
Austin Abrams¹ · Tao Ju¹
Matthew Baker² · Wah Chiu²

Washington University in St. Louis
 Baylor College of Medicine

www.cs.wustl.edu/~taoju/research/modeling2010_tao.ppt

Geometric Problems

- Shape analysis of density maps
 - Tubular vs. plate-like regions
- Topology analysis of SSEs
 - Based on cryo-EM and primary sequence
- Flexible model fitting
 - Guided by SSEs

Geometric Algorithms

- Shape analysis of density maps
 - Skeletonization
- Topology analysis of SSEs
 - Graph matching
- Flexible model fitting
 - Shape registration

Geometric Algorithms in De Novo Modelino

Geometric Algorithms

- Shape analysis of density maps
 - Skeletonization
- Topology analysis of SSEs
 - Graph matching
- Flexible model fitting
 - Shape registration

Algorithm 2: Skeletons from Grayscale Volumes

- Combine skeletons at various thresholds and prune using grayscale directionality
 - Directionality analysis: structure tensor
 - Eigenvectors and eigenvalues give principle directions and amount of intensity variation

$$T_{p} = \sum \theta_{p} T'_{p}$$

$$T'_{p} = \begin{bmatrix} I_{x} \\ I_{y} \\ I_{z} \end{bmatrix} \times \begin{bmatrix} I_{x} \\ I_{y} \\ I_{z} \end{bmatrix}^{T} = \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} & I_{x}I_{z} \\ I_{x}I_{y} & I_{y}^{2} & I_{y}I_{z} \\ I_{x}I_{z} & I_{y}I_{z} & I_{z}^{2} \end{bmatrix}$$

Geometric Algorithms in De Novo Modeling

Geometric Algorithms Shape analysis of density maps Skeletonization Topology analysis of SSEs Graph matching Flexible model fitting Shape registration

Geometric Algorithms

- Shape analysis of density maps
 - Skeletonization
- Topology analysis of SSEs
 - Graph matching
- Flexible model fitting
 - Shape registration

Geometric Algorithms in De Novo Modelino

25

Objective

- Input:
 - Cryo EM density of a molecule
 - High-resolution structure of a similar molecule (can be at a different conformation)

• Fit the high-resolution structure into the density while allowing for non-rigid deformations

Summary

- Shape analysis of density maps
 - Skeletonization
- Topology analysis of SSEs
 - Graph matching
- Flexible model fitting
 - Shape registration

Geometric Algorithms in De Novo Modeling

35