#### Methods for heterogeneity analysis

(with bias)



Sjors H.W. Scheres EMAN workshop, Houston, October 2015



#### An example "protein"



#### Experimental setup



#### Electron microscopy imaging





2D projection



We collect data in 2D, but we want 3D info!

#### Single particle analysis

• Embedded in ice: many unknown orientations



Combine all 2D projections into a 3D reconstruction

#### Projection matching



#### Projection matching



#### 3D reconstruction



#### Projection slice theorem



#### Projection slice theorem



#### Iterative refinement



#### 3D reconstruction



#### Iterative refinement



#### Iterative refinement



#### Further inconveniences

- Defocussing & microscope imperfections introduce artefacts (-> CTF correction)
- Low dose: large amounts of noise
- Structural heterogeneity!



# All samples are structurally heterogeneous!



#### Multi-reference refinement



#### Multi-reference refinement



#### Supervised classification

(developed in the Frank lab)



You kind-of need to know the answer already....

#### Maximum-likelihood approaches

- Marginalize over orientations & classes
  - Probability-weighted assignments
- First described by Fred Sigworth (JSB, 1998)
  - For 2D-alignment, single-reference
  - Real-space data model (white-noise model)
  - Matlab scripts
- Then extended for 2D & 3D classification (2005-2010)
  - XMIPP Scheres et al, JMB 2005; Nat Methods 2007;
- 3D ML-based classification without marginalizing over orientations
  - FREALIGN
     Lyumkis et al, JSB, 2013

## Maximum cross-correlation (least-squares)



#### Maximum likelihood



#### Maximum likelihood



#### Incomplete data problems

Option 1: add Y to the model

In the limit of **noiseless data** the Two techniques are equivalent!

Option 2: marginalize over Y



$$L(\Theta) = P(X \mid \Theta) = \int_{Y} P(X \mid Y, \Theta) P(Y \mid \Theta) d\phi$$

Probability of X, regardless Y

#### ML3D classification



Probability-weighted angular & class assignments

#### Prelim. ribosome reconstruction

91,114 particles; 9.9 Å resolution



In collaboration with Haixiao Gao & Joachim Frank

#### Seed generation



#### ML3D-classification

- 4 references
- 91,114 particles
- 64x64 pix (6.2Å/pix)
- 25 iterations



Scheres et al, Nat Methods, 2007

#### Regularised likelihood approach

- Data model in Fourier-space
  - Colored (correlated) noise
  - CTF-correction
- Marginalize over orientations & classes
  - Probability-weighted assignments
- Regularization term
  - Penalize high-frequency components
  - Elegant derivation of 3D Wiener filter
  - Iteratively learn power of signal and noise from the data
  - No user-expertise required to optimally filter data/map
  - Objectivity
- RELION

Scheres, JMB 2012; JSB 2012

#### Other 3D classification tools (I)

- Non-ML multi-reference refinement
  - IMAGIC/SPIDER Van Heel / Frank labs
  - EMAN2 (new similarity measures, alternate 2D/3D)
     Tang et al, JSB 2012; Ludtke et al, JSB 1999
  - SIMPLE (stochastic hill-climbing)

Elmlund&Elmlund, JSB 2012

- Multi-variate statistical analysis
  - IMAGIC/SPIDER

Elad et al, JSB 2008

#### Other 3D classification tools (II)

- Boot-strapping & 3D (co-)variance map
  - Detect and quantify heterogeneity!
- Focused classification
  - Mask out relevant areas in images
- MSA of bootstrapped maps
  - More generally applicable
  - Pawel: SPARX



### Classification of a continuum of states, and mapping of the energy landscape

Joachim Frank (Columbia), Peter Schwander and Abbas Ourmazd (U. of Wisconsin)





#### Many variations/applications

Possible in different software packages

#### Phase flipping



- Easy to do
- Reasonably effective
- Problems in classification?

#### (3D) Wiener filter

$$V = \frac{\sum_{i=1}^{N} \mathbf{P}_{\varphi}^{T} \frac{\text{CTF}_{i}}{\sigma_{i}^{2}} X_{i}}{\sum_{i=1}^{N} \mathbf{P}_{\varphi}^{T} \frac{\text{CTF}_{i}^{2}}{\sigma_{i}^{2}} + \frac{1}{\tau^{2}}}$$

Optimal linear filter

•  $\sigma^2$ : noise power •  $\tau^2$ : signal power

- Low-pass filters & corrects for CTF
- $\tau^2/\sigma^2$  is often approximated as a constant => low-pass filter effect is lost
- You cannot pre-Wiener filter your data!

#### 2D classification

- Multi-reference 2D refinement/alignment
  - RELION, XMIPP, EMAN2, SPARX (ISAC), SPIDER,
     IMAGIC
- MSA/PCA
  - SPIDER, IMAGIC, XMIPP, EMAN/SPARX?

#### Reference-free 2D classification



#### 2D classification

- We ALWAYS do 2D class averaging to tidy up the data set
  - Use at least ~100 particles/class for cryo-EM
  - Fewer for negative stain
- Often:
  - Large, high-resolution classes with nice particles
  - Small, low-resolution classes with crap
- Delete bad classes (and possibly repeat)

#### 3D classification

- We ALMOST ALWAYS do 3D classification
  - Almost all samples are heterogeneous!
  - Use at least ~3,000 particles/class for cryo-EM
  - Computational cost often limits to 4-10 classes.

#### Main scenarios:

- 7.5° angular sampling; exhaustive angular searches
- Finer angular sampling (e.g 0.9° or 1.8°); local searches around angles from 3D single-reference refinement
- NEW: keep angles fixed and only classify (within a mask)
  - good for presence/absence of small factor

### Classify structural variability

- Standard data set from the Frank lab
  - 10,000 70S ribosomes (50% +EFG; 50% -EFG)
  - MAP-refinement K=4



## Data cleaning

- One/few good classes
- Discard bad classes



γ-secretase









Lu et al, Nature, 2014

# 3.4 Å map, ~130 kDa ordered mass





Fernandez et al, Science, 2013

# Continuous heterogeneity: Masked refinements

 Mask out volume of interest in reference at every step of 3D-(single-reference) refinement



#### Masked classification + signal subtraction



# Conformational heterogeneity



### Independent development



Zhou, ..., Hongwei Wang, Senfang Sui Cell Research, Apr 2015

#### **SNAP-SNARE**



Zhou, ..., Hongwei Wang, Senfang Sui Cell Research, Apr 2015



Some mistakes to avoid...



# Replication complex



### Overfitting

 Always use gold-standard refinement OR limited resolution refinement

- Some new algorithm?
  - Test high-resolution noise substitution

### High-resolution noise-substitution

Replace signal in the data beyond a given resolution d with noise



#### Get stuck with a wrong initial model

No program is guaranteed to find the global minimum...

Human RNA polymerase II PIC He et al & Nogales, Nature (2013)

Nogales, Nature (2013)

As resolutions improve, this will be ever less of a problem.

Should we stop publishing blobs?















# Tilt-pair validation



#### (like in RELION-1.3)

Template-based auto-picking







Microscopes: FEI, Jeol, Zeiss, ...

Detectors: K2, Falcon, DE, TVIPS, ...

Software: SPIDER, IMAGIC, EMAN, SPARX,

XMIPP, BSOFT, FREALIGN, RELION, ...

#### Wang et al (2014) Nat Comm.



#### JEOL3200, DE-12, EMAN (3.8 Å)



#### **Cell Reports**

Molecular Basis for the Ribosome Functioning as an L-Tryptophan Sensor

#### **Graphical Abstract**



#### Authors

Lukas Bischoff, Otto Berninghausen, Roland Beckmann

#### Correspondence

beckmann@lmb.uni-muenchen.de

#### In Brief

Bischoff et al. now present a cryoelectron microscopy reconstruction of a TnaC stalled ribosome, revealing two L-Trp molecules in the ribosomal exit tunnel. As a result, the peptidyl transferase center adopts a distinct conformation that precludes productive accommodation of release factor 2.

Titan Krios, Falcon-II, SPIDER (3.8 Å)

Tim Grant & Niko Grigorieff, eLife 2015

Titan Krios, K2, FREALIGN (2.6 Å)

#### Conclusions

- Image processing will continue to drive this field forward
  - A variety of software solutions will be most efficient
- New hardware will continue to have huge impacts
  - Better SNRs: distinction between smaller differences
- Making good samples remains crucial!
  - Good classification algorithms are no excuse for bad samples...
- Structural heterogeneity can be an opportunity!
  - If addressed adequately

#### Thanks!

#### LMB EM-course 2014

Daily in the MPLT from 9:30-10:30am

Mon May 12: Tony Crowther

Course introduction with a historical perspective

**Tue May 13: Sjors Scheres** 

Image formation, Fourier analysis, CTF theory

Wed May 14: Chris Russo

Microscopy physics and optics

Thu May 15: Lori Passmore

sample preparation

Fri May 16: Paula da Fonseca

Initial data analysis

Mon May 19: Sjors Scheres

Image refinement in 2D and 3D

**Tue May 20: Tanmay Bharat** 

Tomography and sub-tomogram averaging

Wed May 21: Richard Henderson

Map validation

Thu May 22: David Barford & Alan Brown

Low- and high-resolution modeling

Thu May 22: Shaoxia Chen, Christos Savva & others

(11am-12pm) Local setup and training & 2 example applications

Enquiries: scheres@mrc-lmb.cam.ac.uk

Lecture PDFs and professionally edited videos available on:

ftp://ftp.mrc-lmb.cam.ac.uk/pub/scheres/EM-course