#include <symmetry.h>
Inheritance diagram for EMAN::Symmetry3D:


Public Types | |
| typedef vector< vector< Vec3f > >::const_iterator | cit |
| typedef vector< vector< Vec3f > >::iterator | ncit |
Public Member Functions | |
| Symmetry3D () | |
| virtual | ~Symmetry3D () |
| virtual Dict | get_delimiters (const bool inc_mirror=false) const =0 |
| Every Symmetry3D object must return a dictionary containing the delimiters that define its asymmetric unit (this is not strictly true in the case of the PlatonicSym class). | |
| virtual Transform | get_sym (const int n) const =0 |
| Every Symmetry3D object must provide access to the full set of its symmetry operators via this function. | |
| virtual int | get_nsym () const =0 |
| The total number of unique symmetry operations that will be return by this object when a calling program access Symmetry3D::get_sym. | |
| virtual float | get_az_alignment_offset () const |
| This functionality is only relevant to platonic symmetries. | |
| virtual bool | is_platonic_sym () const |
| A function that is used to determine if this is a platonic symmetry object This function is only virtually overidden by the PlatonicSym symmetry, which returns true, not false. | |
| virtual bool | is_h_sym () const |
| A function that is used to determine if this is a Helical symmetry object This function is only virtually overidden by the HSym symmetry, which returns true, not false. | |
| virtual bool | is_c_sym () const |
| A function that is used to determine if this is a c symmetry object This function is only virtually overidden by the CSym object, which returns true. | |
| virtual bool | is_d_sym () const |
| A function that is used to determine if this is a d symmetry object This function is only virtually overidden by the DSym object, which returns true. | |
| virtual bool | is_tet_sym () const |
| A function that is used to determine if this is the tetrahedral symmetry object This function is only virtually overidden by the TetSym object, which returns true. | |
| virtual int | get_max_csym () const =0 |
| The Symmetry3D object must return the maximum degree of symmetry it exhibits about any one axis. | |
| virtual vector< Vec3f > | get_asym_unit_points (bool inc_mirror) const =0 |
| The Symmetry3D object must be capable of returning an ordered list of points on the unit sphere that define its asymmetric unit (with mirror considerations). | |
| vector< Transform > | gen_orientations (const string &generatorname="eman", const Dict &parms=Dict()) |
| Ask the Symmetry3D object to generate a set of orientations in its asymmetric unit using an OrientationGenerator constructed from the given parameters (using a Factory). | |
| virtual bool | is_in_asym_unit (const float &altitude, const float &azimuth, const bool inc_mirror) const =0 |
| A function to be used when generating orientations over portion of the unit sphere defined by parameters returned by get_delimiters. | |
| virtual Transform | reduce (const Transform &t3d, int n=0) const |
| A function that will reduce an orientation, as characterized by Euler anges, into a specific asymmetric unit. | |
| virtual int | in_which_asym_unit (const Transform &t3d) const |
| A function that will determine in which asymmetric unit a given orientation resides The asymmetric unit 'number' will depend entirely on the order in which different symmetry operations are return by the Symmetry3D::get_sym function. | |
| virtual int | point_in_which_asym_unit (const Vec3f &v) const |
| A function that will determine in which asymmetric unit a given vector resides The asymmetric unit 'number' will depend entirely on the order in which different symmetry operations are return by the Symmetry3D::get_sym function The vector is a point. | |
| virtual vector< vector< Vec3f > > | get_asym_unit_triangles (bool inc_mirror) const =0 |
| Get triangles that precisely occlude the projection area of the default asymmetric unit. | |
| virtual vector< Transform > | get_touching_au_transforms (bool inc_mirror=true) const |
| Gets a vector of Transform objects that define the set of asymmetric units that touch the default asymmetric unit. | |
| virtual vector< Transform > | get_syms () const |
Static Public Member Functions | |
| vector< Transform > | get_symmetries (const string &symmetry) |
Protected Member Functions | |
| void | cache_au_planes () const |
| Establish the asymmetric unit planes cache. | |
| void | delete_au_planes () |
| Clear the asymmetric unit planes cache. | |
Protected Attributes | |
| float ** | cached_au_planes |
| The asymmetric unit planes are cached to provide a great speed up the point_in_which_asym_unit function, which is called by reduce and by in_which_asym_unit. | |
| int | cache_size |
| Have to remember the cache size. | |
| int | num_triangles |
| This is stores the number of triangles returned by get_asym_unit_triangles(true). | |
| vector< vector< Vec3f > > | au_sym_triangles |
| This cache is of size cache_size. | |
Private Member Functions | |
| Symmetry3D (const Symmetry3D &) | |
| Disallow copy construction. | |
| Symmetry3D & | operator= (const Symmetry3D &) |
| Disallow assignment. | |
Objects of this type must provide delimiters for the asymmetric unit (get_delimiters), and must also provide all of the rotational symmetric operations (get_sym(const int n)). They must also provide the total number of unique symmetric operations with get_nsym (except in helical symmetry). get_delimiter returns a dictionary with "alt_max" and "az_max" keys, which correspond to the encompassing azimuth and altitude angles of the asymmetric unit. These can be interpreted in a relatively straight forward fashion when dealing with C and D symmetries to demarcate the asymmetric unit, however when dealing with Platonic symmetries the asymmetric unit is not so trivial. see http://blake.bcm.edu/emanwiki/EMAN2/Symmetry for figures and description of what we're doing here, for all the symmetries, and look in the comments of the PlatonicSym classes themselves. It inherits from a factory base, making it amenable to incorporation in EMAN2 style factories
Definition at line 56 of file symmetry.h.
|
|
Definition at line 59 of file symmetry.h. |
|
|
Definition at line 60 of file symmetry.h. Referenced by cache_au_planes(). |
|
|
Definition at line 899 of file symmetry.cpp. 00899 : cached_au_planes(0),cache_size(0),num_triangles(0),au_sym_triangles() {}
|
|
|
Definition at line 900 of file symmetry.cpp. References cached_au_planes, and delete_au_planes(). 00900 {
00901 if (cached_au_planes != 0 ) {
00902 delete_au_planes();
00903 }
00904 }
|
|
|
Disallow copy construction.
|
|
|
Establish the asymmetric unit planes cache.
Definition at line 957 of file symmetry.cpp. References au_sym_triangles, cache_size, cached_au_planes, EMAN::Vec3< Type >::end(), EMAN::Util::equation_of_plane(), fit, get_asym_unit_triangles(), get_nsym(), get_sym(), ncit, num_triangles, t, and UnexpectedBehaviorException. Referenced by point_in_which_asym_unit(). 00957 {
00958 if (cached_au_planes == 0 ) {
00959 vector< vector<Vec3f> > au_triangles = get_asym_unit_triangles(true);
00960 num_triangles = au_triangles.size();
00961 cache_size = get_nsym()*au_triangles.size();
00962
00963 cached_au_planes = new float*[cache_size];
00964 float** fit = cached_au_planes;
00965 for(int i =0; i < cache_size; ++i,++fit) {
00966 float *t = new float[4];
00967 *fit = t;
00968 }
00969
00970
00971 int k = 0;
00972 for(int i = 0; i < get_nsym(); ++i) {
00973
00974 for( ncit it = au_triangles.begin(); it != au_triangles.end(); ++it, ++k)
00975 {
00976 // For each given triangle
00977 vector<Vec3f> points = *it;
00978 if ( i != 0 ) {
00979 for (vector<Vec3f>::iterator iit = points.begin(); iit != points.end(); ++iit ) {
00980 // Rotate the points in the triangle so that the triangle occupies the
00981 // space of the current asymmetric unit
00982 *iit = (*iit)*get_sym(i);
00983 }
00984 }
00985
00986 au_sym_triangles.push_back(points);
00987
00988 // Determine the equation of the plane for the points, store it in plane
00989 Util::equation_of_plane(points[0],points[2],points[1],cached_au_planes[k]);
00990 }
00991 }
00992 }
00993 else throw UnexpectedBehaviorException("Attempt to generate a cache when cache exists");
00994 }
|
|
|
Clear the asymmetric unit planes cache.
Definition at line 996 of file symmetry.cpp. References cached_au_planes, fit, and UnexpectedBehaviorException. Referenced by ~Symmetry3D(). 00996 {
00997 if (cached_au_planes == 0 ) throw UnexpectedBehaviorException("Attempt to delete a cache that does not exist");
00998 float** fit = cached_au_planes;
00999 for(int i =0; i < cache_size; ++i,++fit) {
01000 if (*fit == 0) throw UnexpectedBehaviorException("Attempt to delete a cache that does not exist");
01001 delete [] *fit;
01002 *fit = 0;
01003 }
01004
01005 delete [] cached_au_planes;
01006 cached_au_planes = 0;
01007 }
|
|
||||||||||||
|
Ask the Symmetry3D object to generate a set of orientations in its asymmetric unit using an OrientationGenerator constructed from the given parameters (using a Factory). This is reminiscent of the strategy design pattern
Definition at line 156 of file symmetry.cpp. References EMAN::OrientationGenerator::gen_orientations(), and EMAN::Util::str_to_lower(). Referenced by EMAN::SymAlignProcessor::process(), and EMAN::RT3DSphereAligner::xform_align_nbest(). 00157 {
00158 ENTERFUNC;
00159 vector<Transform> ret;
00160 OrientationGenerator *g = Factory < OrientationGenerator >::get(Util::str_to_lower(generatorname), parms);
00161 if (g) {
00162 ret = g->gen_orientations(this);
00163 if( g )
00164 {
00165 delete g;
00166 g = 0;
00167 }
00168 }
00169 else throw;
00170
00171 EXITFUNC;
00172
00173 return ret;
00174 }
|
|
|
The Symmetry3D object must be capable of returning an ordered list of points on the unit sphere that define its asymmetric unit (with mirror considerations). The list can be any length, and must be constructed carefully. If the list consists of points A B and C, then arcs on the unit sphere connecting A to B, then B to C, then C to A must define the asymmetric unit (with or without its mirror portion). i.e. it is a cyclic list, on any length
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::PlatonicSym, and EMAN::TetrahedralSym. Referenced by get_touching_au_transforms(). |
|
|
Get triangles that precisely occlude the projection area of the default asymmetric unit. This will be used for collision detection in Symmetry3D::reduce
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, and EMAN::PlatonicSym. Referenced by cache_au_planes(). |
|
|
This functionality is only relevant to platonic symmetries. But it could grow into functionality for the other symmetries. Reimplemented in EMAN::TetrahedralSym, and EMAN::IcosahedralSym. Definition at line 86 of file symmetry.h. Referenced by EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), and EMAN::PlatonicSym::get_asym_unit_points(). 00086 { return 0.0; }
|
|
|
Every Symmetry3D object must return a dictionary containing the delimiters that define its asymmetric unit (this is not strictly true in the case of the PlatonicSym class).
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, and EMAN::PlatonicSym. Referenced by EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::SaffOrientationGenerator::get_orientations_tally(), EMAN::EvenOrientationGenerator::get_orientations_tally(), EMAN::EmanOrientationGenerator::get_orientations_tally(), and get_touching_au_transforms(). |
|
|
The Symmetry3D object must return the maximum degree of symmetry it exhibits about any one axis. This function is only called in the AsymmUnitOrientationGenerator. Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::TetrahedralSym, EMAN::OctahedralSym, and EMAN::IcosahedralSym. Referenced by EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::get_orientations_tally(), and EMAN::PlatonicSym::init(). |
|
|
The total number of unique symmetry operations that will be return by this object when a calling program access Symmetry3D::get_sym. However in the case of HSym, this is really something else. Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::TetrahedralSym, EMAN::OctahedralSym, and EMAN::IcosahedralSym. Referenced by cache_au_planes(), EMAN::BackProjectionReconstructor::finish(), EMAN::RandomOrientationGenerator::gen_orientations(), EMAN::OrientationGenerator::get_az_max(), EMAN::Transform::get_nsym(), EMAN::Transform::get_sym_proj(), get_syms(), get_touching_au_transforms(), and point_in_which_asym_unit(). |
|
|
Every Symmetry3D object must provide access to the full set of its symmetry operators via this function.
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::TetrahedralSym, EMAN::OctahedralSym, and EMAN::IcosahedralSym. Referenced by cache_au_planes(), EMAN::Transform::get_sym(), EMAN::Transform::get_sym_proj(), get_syms(), get_touching_au_transforms(), and reduce(). |
|
|
Definition at line 1163 of file symmetry.cpp. References EMAN::Factory< T >::get(), and get_syms(). Referenced by EMAN::WienerFourierReconstructor::do_compare_slice_work(), EMAN::FourierReconstructor::do_compare_slice_work(), EMAN::WienerFourierReconstructor::do_insert_slice_work(), EMAN::FourierReconstructor::do_insert_slice_work(), EMAN::SymAlignProcessor::process(), EMAN::SymSearchProcessor::process_inplace(), and EMAN::RT3DSymmetryAligner::xform_align_nbest(). 01164 {
01165 Symmetry3D* sym = Factory<Symmetry3D>::get(Util::str_to_lower(symmetry));
01166 vector<Transform> ret = sym->get_syms();
01167 delete sym;
01168 return ret;
01169 }
|
|
|
Definition at line 1147 of file symmetry.cpp. References get_nsym(), and get_sym(). Referenced by EMAN::BackProjectionReconstructor::finish(), and get_symmetries(). 01148 {
01149
01150 vector<Transform> ret;
01151 // if (t.is_identity()) {
01152 for(int i = 0; i < get_nsym(); ++i ) {
01153 ret.push_back(get_sym(i));
01154 }
01155 // } else {
01156 // for(int i = 0; i < get_nsym(); ++i ) {
01157 // ret.push_back(get_sym(i)*t);
01158 // }
01159 // }
01160 return ret;
01161 }
|
|
|
Gets a vector of Transform objects that define the set of asymmetric units that touch the default asymmetric unit. The 'default asymmetric unit' is defined by the results of Symmetry3d::get_asym_unit_points and is sensitive to whether or not you want to include the mirror part of the asymmetric unit. This function is useful when used in conjunction with Symmetry3D::reduce, and particularly when finding the angular deviation of particles through different stages of iterative Single Particle Reconstruction This function could be expanded to work for an asymmetric unit number supplied by the user.
Definition at line 1078 of file symmetry.cpp. References EMAN::Dict::end(), get_asym_unit_points(), get_delimiters(), get_nsym(), get_sym(), is_d_sym(), is_platonic_sym(), EMAN::Vec3< Type >::squared_length(), t, EMAN::Vec3f, x, and y. 01079 {
01080 vector<Transform> ret;
01081 vector<int> hit_cache;
01082
01083 vector<Vec3f> points = get_asym_unit_points(inc_mirror);
01084 // Warning, this is a gross hack because it is assuming that the asym_unit_points
01085 // returned by DSym are in a particular orientation with respect to symmetric axes
01086 // if the internals of DSym change it could change what we should do here...
01087 // but for the time being it will do
01088 if (inc_mirror && is_d_sym() && (get_nsym()/2 % 2 == 0)) {
01089 Dict delim = get_delimiters(false);
01090 float angle = (float)(EMConsts::deg2rad*float(delim["az_max"]));
01091 float y = -cos(angle);
01092 float x = sin(angle);
01093 points.push_back(Vec3f(x,y,0));
01094 }
01095 else if ( is_d_sym() && (get_nsym()/2 % 2 == 1)) {
01096 Dict delim = get_delimiters(false);
01097 float angle = float(delim["az_max"])/2.0f;
01098 // cout << "Odd dsym using " << angle << endl;
01099 angle *= (float)EMConsts::deg2rad;
01100 float y = -cos(angle);
01101 float x = sin(angle);
01102 points.push_back(Vec3f(x,y,0));
01103
01104 if ( inc_mirror ) {
01105 angle = 3.0f*(float(delim["az_max"]))/2.0f;
01106 angle *= (float)EMConsts::deg2rad;
01107 float y = -cos(angle);
01108 float x = sin(angle);
01109 points.push_back(Vec3f(x,y,0));
01110 }
01111 }
01112
01113 typedef vector<Vec3f>::const_iterator const_point_it;
01114 for(const_point_it point = points.begin(); point != points.end(); ++point ) {
01115
01116 for(int i = 1; i < get_nsym(); ++i) {
01117
01118 if ( find(hit_cache.begin(),hit_cache.end(),i) != hit_cache.end() ) continue;
01119 Transform t = get_sym(i);
01120 Vec3f result = (*point)*t;
01121
01122 if (is_platonic_sym()) {
01123 for(const_point_it tmp = points.begin(); tmp != points.end(); ++tmp ) {
01124 Vec3f tt = result-(*tmp);
01125 if (tt.squared_length() < 0.01f) {
01126 hit_cache.push_back(i);
01127 ret.push_back(t);
01128 }
01129
01130 }
01131 }
01132 else {
01133 result -= *point;
01134 if (result.squared_length() < 0.05f) {
01135 hit_cache.push_back(i);
01136 ret.push_back(t);
01137 }
01138 }
01139 }
01140
01141 }
01142
01143 return ret;
01144 }
|
|
|
A function that will determine in which asymmetric unit a given orientation resides The asymmetric unit 'number' will depend entirely on the order in which different symmetry operations are return by the Symmetry3D::get_sym function.
Definition at line 938 of file symmetry.cpp. References EMAN::Transform::invert(), point_in_which_asym_unit(), and EMAN::Vec3f. Referenced by reduce(). 00939 {
00940 // Here it is assumed that final destination of the orientation (as encapsulated in the t3d object) is
00941 // in the z direction, so in essence we will start in the direction z and 'undo' the orientation to get the real
00942 // direction
00943 Vec3f p(0,0,1);
00944
00945 Transform o(t3d);
00946 // Orientations are alway transposed when dealing with asymmetric units, projections,etc
00947 // We take the transpose to 'undo' the transform and get the true direction of the point.
00948 o.invert();
00949 // Figure out where the point would end up. No we could just as easily not transpose and do
00950 // left multiplation (as in what occurs in the FourierReconstructor during slice insertion)
00951 p = o*p;
00952
00953 return point_in_which_asym_unit(p);
00954 }
|
|
|
A function that is used to determine if this is a c symmetry object This function is only virtually overidden by the CSym object, which returns true.
Reimplemented in EMAN::CSym. Definition at line 106 of file symmetry.h. Referenced by EMAN::RandomOrientationGenerator::gen_orientations(), and EMAN::OrientationGenerator::get_az_max(). 00106 { return false; }
|
|
|
A function that is used to determine if this is a d symmetry object This function is only virtually overidden by the DSym object, which returns true.
Reimplemented in EMAN::DSym. Definition at line 112 of file symmetry.h. Referenced by EMAN::OrientationGenerator::get_az_max(), and get_touching_au_transforms(). 00112 { return false; }
|
|
|
A function that is used to determine if this is a Helical symmetry object This function is only virtually overidden by the HSym symmetry, which returns true, not false.
Reimplemented in EMAN::HSym. Definition at line 100 of file symmetry.h. Referenced by EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::SaffOrientationGenerator::get_orientations_tally(), EMAN::EvenOrientationGenerator::get_orientations_tally(), and EMAN::EmanOrientationGenerator::get_orientations_tally(). 00100 { return false; }
|
|
||||||||||||||||
|
A function to be used when generating orientations over portion of the unit sphere defined by parameters returned by get_delimiters. In platonic symmetry altitude and azimuth alone are not enough to correctly demarcate the asymmetric unit. See the get_delimiters comments.
Implemented in EMAN::CSym, EMAN::DSym, EMAN::HSym, EMAN::PlatonicSym, and EMAN::TetrahedralSym. Referenced by EMAN::OptimumOrientationGenerator::gen_orientations(), EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::RandomOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::SaffOrientationGenerator::get_orientations_tally(), EMAN::EvenOrientationGenerator::get_orientations_tally(), and EMAN::EmanOrientationGenerator::get_orientations_tally(). |
|
|
A function that is used to determine if this is a platonic symmetry object This function is only virtually overidden by the PlatonicSym symmetry, which returns true, not false.
Reimplemented in EMAN::PlatonicSym. Definition at line 94 of file symmetry.h. Referenced by EMAN::SaffOrientationGenerator::gen_orientations(), EMAN::EvenOrientationGenerator::gen_orientations(), EMAN::EmanOrientationGenerator::gen_orientations(), EMAN::OrientationGenerator::get_az_max(), EMAN::SaffOrientationGenerator::get_orientations_tally(), EMAN::EvenOrientationGenerator::get_orientations_tally(), EMAN::EmanOrientationGenerator::get_orientations_tally(), and get_touching_au_transforms(). 00094 { return false; }
|
|
|
A function that is used to determine if this is the tetrahedral symmetry object This function is only virtually overidden by the TetSym object, which returns true.
Reimplemented in EMAN::TetrahedralSym. Definition at line 118 of file symmetry.h. Referenced by EMAN::OrientationGenerator::get_az_max(). 00118 { return false; }
|
|
|
Disallow assignment.
|
|
|
A function that will determine in which asymmetric unit a given vector resides The asymmetric unit 'number' will depend entirely on the order in which different symmetry operations are return by the Symmetry3D::get_sym function The vector is a point.
Definition at line 1009 of file symmetry.cpp. References au_sym_triangles, cache_au_planes(), cached_au_planes, EMAN::Vec3< Type >::dot(), get_nsym(), t, v, and EMAN::Vec3f. Referenced by in_which_asym_unit(), and EMAN::AutoMaskAsymUnit::process_inplace(). 01010 {
01011 if (cached_au_planes == 0) {
01012 cache_au_planes();
01013 }
01014
01015 float epsNow=0.01f;
01016 int k = 0;
01017 for(int i = 0; i < get_nsym(); ++i) {
01018 for( int j = 0; j < num_triangles; ++j,++k) {
01019 vector<Vec3f> points = au_sym_triangles[k];
01020
01021 float* plane = cached_au_planes[k];
01022 Vec3f tmp = p;
01023
01024 // Determine the intersection of p with the plane - do this by finding out how much p should be scaled by
01025 float scale = plane[0]*tmp[0]+plane[1]*tmp[1]+plane[2]*tmp[2];
01026 if ( scale != 0 )
01027 scale = -plane[3]/scale;
01028 else {
01029 // parralel!
01030 continue;
01031 }
01032
01033 // If the scale factor is less than zero, then p is definitely not in this asymmetric unit
01034 if (scale <= 0) continue;
01035
01036 // This is the intersection point
01037 Vec3f pp = tmp*scale;
01038
01039 // Now we have to see if the point p is inside the region bounded by the points, or if it is outside
01040 // If it is inside the region then p is in this asymmetric unit.
01041
01042 // This formula take from FIXME fill in once I get to work
01043 Vec3f v = points[2]-points[0];
01044 Vec3f u = points[1]-points[0];
01045 Vec3f w = pp - points[0];
01046
01047 float udotu = u.dot(u);
01048 float udotv = u.dot(v);
01049 float udotw = u.dot(w);
01050 float vdotv = v.dot(v);
01051 float vdotw = v.dot(w);
01052
01053 float d = 1.0f/(udotv*udotv - udotu*vdotv);
01054 float s = udotv*vdotw - vdotv*udotw;
01055 s *= d;
01056
01057 float t = udotv*udotw - udotu*vdotw;
01058 t *= d;
01059
01060 // We've done a few multiplications, so detect when there are tiny residuals that may throw off the final
01061 // decision
01062 if (fabs(s) < Transform::ERR_LIMIT ) s = 0;
01063 if (fabs(t) < Transform::ERR_LIMIT ) t = 0;
01064
01065 if ( fabs((fabs(s)-1.0)) < Transform::ERR_LIMIT ) s = 1;
01066 if ( fabs((fabs(t)-1.0)) < Transform::ERR_LIMIT ) t = 1;
01067
01068 // The final decision, if this is true then we've hit the jackpot
01069 if ( s >= -epsNow && t >= -epsNow && (s+t) <= 1+epsNow ) {
01070 // cout << " i " << i << " j " << j << " s " << s << " t " << t << " s+t " << s+t << endl;
01071 return i;
01072 }
01073 }
01074 }
01075
01076 return -1;
01077 }
|
|
|
This cache is of size cache_size.
Definition at line 214 of file symmetry.h. Referenced by cache_au_planes(), and point_in_which_asym_unit(). |
|
|
Have to remember the cache size.
Definition at line 210 of file symmetry.h. Referenced by cache_au_planes(). |
|
|
The asymmetric unit planes are cached to provide a great speed up the point_in_which_asym_unit function, which is called by reduce and by in_which_asym_unit.
Definition at line 207 of file symmetry.h. Referenced by cache_au_planes(), delete_au_planes(), point_in_which_asym_unit(), and ~Symmetry3D(). |
|
|
This is stores the number of triangles returned by get_asym_unit_triangles(true).
Definition at line 212 of file symmetry.h. Referenced by cache_au_planes(). |
1.3.9.1