#include <processor.h>
Inheritance diagram for EMAN::FourierToCornerProcessor:
Public Member Functions | |
virtual void | process_inplace (EMData *image) |
Fourier origin shift the image in the backwards direction Should only be called after the application of FourierToCenterProcessor. | |
virtual string | get_name () const |
Get the processor's name. | |
virtual string | get_desc () const |
Get the descrition of this specific processor. | |
Static Public Member Functions | |
static Processor * | NEW () |
Static Public Attributes | |
static const string | NAME = "xform.fourierorigin.tocorner" |
Definition at line 4583 of file processor.h.
virtual string EMAN::FourierToCornerProcessor::get_desc | ( | ) | const [inline, virtual] |
Get the descrition of this specific processor.
This function must be overwritten by a subclass.
Implements EMAN::Processor.
Definition at line 4603 of file processor.h.
virtual string EMAN::FourierToCornerProcessor::get_name | ( | ) | const [inline, virtual] |
Get the processor's name.
Each processor is identified by a unique name.
Implements EMAN::Processor.
Definition at line 4593 of file processor.h.
References NAME.
04594 { 04595 return NAME; 04596 }
static Processor* EMAN::FourierToCornerProcessor::NEW | ( | ) | [inline, static] |
Definition at line 4598 of file processor.h.
04599 { 04600 return new FourierToCornerProcessor(); 04601 }
void FourierToCornerProcessor::process_inplace | ( | EMData * | image | ) | [virtual] |
Fourier origin shift the image in the backwards direction Should only be called after the application of FourierToCenterProcessor.
image | the image to operate on |
ImageFormatException | if the image is not complex |
Implements EMAN::Processor.
Definition at line 4404 of file processor.cpp.
References EMAN::EMData::get_data(), EMAN::EMData::get_xsize(), EMAN::EMData::get_ysize(), EMAN::EMData::get_zsize(), ImageFormatException, EMAN::EMData::is_complex(), rdata, and EMAN::EMData::set_shuffled().
04405 { 04406 if ( !image->is_complex() ) throw ImageFormatException("Can not Fourier origin shift an image that is not complex"); 04407 04408 int nx=image->get_xsize(); 04409 int ny=image->get_ysize(); 04410 int nz=image->get_zsize(); 04411 04412 int nxy = nx*ny; 04413 04414 if ( ny == 1 && nz == 1 ){ 04415 cout << "Warning- attempted Fourier origin shift a 1D image - no action taken" << endl; 04416 return; 04417 } 04418 int yodd = (ny%2==1); 04419 int zodd = (nz%2==1); 04420 04421 float* rdata = image->get_data(); 04422 04423 float tmp[2]; 04424 float* p1; 04425 float* p2; 04426 04427 if (yodd){ 04428 // Swap the middle slice (with respect to the y direction) with the bottom slice 04429 // shifting all slices above the middles slice upwards by one pixel, stopping 04430 // at the middle slice, not if nz = 1 we are not talking about slices, we are 04431 // talking about rows 04432 float prev[2]; 04433 size_t idx; 04434 for( int s = 0; s < nz; s++ ) { 04435 for( int c =0; c < nx; c += 2 ) { 04436 idx = (size_t)s*nxy+ny/2*nx+c; 04437 prev[0] = rdata[idx]; 04438 prev[1] = rdata[idx+1]; 04439 for( int r = 0; r <= ny/2; ++r ) { 04440 idx = (size_t)s*nxy+r*nx+c; 04441 float* p1 = &rdata[idx]; 04442 tmp[0] = p1[0]; 04443 tmp[1] = p1[1]; 04444 04445 p1[0] = prev[0]; 04446 p1[1] = prev[1]; 04447 04448 prev[0] = tmp[0]; 04449 prev[1] = tmp[1]; 04450 } 04451 } 04452 } 04453 } 04454 04455 // Shift slices (3D) or rows (2D) correctly in the y direction 04456 size_t idx1, idx2; 04457 for( int s = 0; s < nz; ++s ) { 04458 for( int r = 0 + yodd; r < ny/2+yodd; ++r ) { 04459 for( int c =0; c < nx; c += 2 ) { 04460 idx1 = (size_t)s*nxy+r*nx+c; 04461 idx2 = (size_t)s*nxy+(r+ny/2)*nx+c; 04462 p1 = &rdata[idx1]; 04463 p2 = &rdata[idx2]; 04464 04465 tmp[0] = p1[0]; 04466 tmp[1] = p1[1]; 04467 04468 p1[0] = p2[0]; 04469 p1[1] = p2[1]; 04470 04471 p2[0] = tmp[0]; 04472 p2[1] = tmp[1]; 04473 } 04474 } 04475 } 04476 04477 if ( nz != 1 ) 04478 { 04479 04480 if (zodd){ 04481 // Swap the middle slice (with respect to the z direction) and the front slice 04482 // shifting all behind the front slice towards the middle a distance of 1 voxel, 04483 // stopping at the middle slice. 04484 float prev[2]; 04485 size_t idx; 04486 for( int r = 0; r < ny; ++r ) { 04487 for( int c =0; c < nx; c += 2 ) { 04488 idx = (size_t)nz/2*nxy+r*nx+c; 04489 prev[0] = rdata[idx]; 04490 prev[1] = rdata[idx+1]; 04491 for( int s = 0; s <= nz/2; ++s ) { 04492 idx = (size_t)s*nxy+r*nx+c; 04493 float* p1 = &rdata[idx]; 04494 tmp[0] = p1[0]; 04495 tmp[1] = p1[1]; 04496 04497 p1[0] = prev[0]; 04498 p1[1] = prev[1]; 04499 04500 prev[0] = tmp[0]; 04501 prev[1] = tmp[1]; 04502 } 04503 } 04504 } 04505 } 04506 04507 // Shift slices correctly in the z direction 04508 size_t idx1, idx2; 04509 for( int s = 0+zodd; s < nz/2 + zodd; ++s ) { 04510 for( int r = 0; r < ny; ++r ) { 04511 for( int c =0; c < nx; c += 2 ) { 04512 idx1 = (size_t)s*nxy+r*nx+c; 04513 idx2 = (size_t)(s+nz/2)*nxy+r*nx+c; 04514 p1 = &rdata[idx1]; 04515 p2 = &rdata[idx2]; 04516 04517 tmp[0] = p1[0]; 04518 tmp[1] = p1[1]; 04519 04520 p1[0] = p2[0]; 04521 p1[1] = p2[1]; 04522 04523 p2[0] = tmp[0]; 04524 p2[1] = tmp[1]; 04525 } 04526 } 04527 } 04528 } 04529 image->set_shuffled(false); 04530 }
const string FourierToCornerProcessor::NAME = "xform.fourierorigin.tocorner" [static] |