#include <processor.h>
Inheritance diagram for EMAN::TestImageFourierNoiseGaussian:


Public Member Functions | |
| virtual void | process_inplace (EMData *image) |
| To process an image in-place. | |
| virtual string | get_name () const |
| Get the processor's name. | |
| virtual string | get_desc () const |
| Get the descrition of this specific processor. | |
| virtual TypeDict | get_param_types () const |
| Get processor parameter information in a dictionary. | |
Static Public Member Functions | |
| Processor * | NEW () |
Static Public Attributes | |
| const string | NAME = "testimage.noise.fourier.gaussian" |
| sigma | sigma value for this Gaussian blob |
Definition at line 5829 of file processor.h.
|
|
Get the descrition of this specific processor. This function must be overwritten by a subclass.
Implements EMAN::Processor. Definition at line 5839 of file processor.h. 05840 {
05841 return "Replace a source image with pink Fourier noise, based on a Gaussian. Random phase.";
05842 }
|
|
|
Get the processor's name. Each processor is identified by a unique name.
Implements EMAN::Processor. Definition at line 5834 of file processor.h. 05835 {
05836 return NAME;
05837 }
|
|
|
Get processor parameter information in a dictionary. Each parameter has one record in the dictionary. Each record contains its name, data-type, and description.
Reimplemented from EMAN::Processor. Definition at line 5849 of file processor.h. References EMAN::TypeDict::put(). 05850 {
05851 TypeDict d;
05852 d.put("sigma", EMObject::FLOAT, "sigma value");
05853 return d;
05854 }
|
|
|
Definition at line 5844 of file processor.h. 05845 {
05846 return new TestImageFourierNoiseGaussian();
05847 }
|
|
|
To process an image in-place. For those processors which can only be processed out-of-place, override this function to just print out some error message to remind user call the out-of-place version.
Implements EMAN::Processor. Definition at line 6713 of file processor.cpp. References EMAN::EMData::ap2ri(), EMAN::EMData::depad(), EMAN::EMData::do_ift_inplace(), EMAN::EMData::get_data(), EMAN::Util::get_frand(), EMAN::EMData::get_ndim(), EMAN::EMData::get_xsize(), EMAN::EMData::get_ysize(), EMAN::EMData::get_zsize(), EMAN::EMData::is_complex(), EMAN::length(), nx, ny, phase(), EMAN::EMData::process_inplace(), EMAN::EMData::ri2ap(), EMAN::EMData::set_complex(), EMAN::Dict::set_default(), EMAN::EMData::set_fftodd(), EMAN::EMData::set_fftpad(), EMAN::EMData::set_size(), sqrt(), x, and y. 06714 {
06715 if (!image->is_complex()) {
06716 int nx = image->get_xsize();
06717 int offset = 2 - nx%2;
06718
06719 image->set_size(nx+offset,image->get_ysize(),image->get_zsize());
06720 image->set_complex(true);
06721 if (1 == offset) image->set_fftodd(true);
06722 else image->set_fftodd(false);
06723 image->set_fftpad(true);
06724 }
06725 image->ri2ap();
06726
06727 float sigma = params.set_default("sigma",.25f);
06728
06729 float * d = image->get_data();
06730 int nx = image->get_xsize();
06731 int ny = image->get_ysize();
06732 int nxy = image->get_ysize()*nx;
06733 int nzon2 = image->get_zsize()/2;
06734 int nyon2 = image->get_ysize()/2;
06735 float rx, ry, rz, length, amp, phase;
06736 int twox;
06737 for (int z = 0; z< image->get_zsize(); ++z) {
06738 for (int y = 0; y < image->get_ysize(); ++y) {
06739 for (int x = 0; x < image->get_xsize()/2; ++x) {
06740 rx = (float)x;
06741 ry = (float)nyon2 - (float)y;
06742 rz = (float)nzon2 - (float)z;
06743 length = sqrt(rx*rx + ry*ry + rz*rz);
06744 amp = exp(-sigma*length);
06745 phase = Util::get_frand(0,1)*2*M_PI;
06746
06747 twox = 2*x;
06748 size_t idx1 = twox + y*nx+(size_t)z*nxy;
06749 size_t idx2 = idx1 + 1;
06750 d[idx1] = amp;
06751 d[idx2] = phase;
06752
06753 }
06754 }
06755 }
06756
06757 image->ap2ri();
06758 if (image->get_ndim() == 2) {
06759 bool yodd = image->get_ysize() % 2 == 1;
06760
06761 int yit = image->get_ysize()/2-1;
06762 int offset = 1;
06763 if (yodd) {
06764 offset = 0;
06765 }
06766 for (int y = 0; y < yit; ++y) {
06767 int bot_idx = (y+offset)*nx;
06768 int top_idx = (ny-1-y)*nx;
06769 float r1 = d[bot_idx];
06770 float i1 = d[bot_idx+1];
06771 float r2 = d[top_idx];
06772 float i2 = d[top_idx+1];
06773 float r = (r1 + r2)/2.0f;
06774 float i = (i1 + i2)/2.0f;
06775 d[bot_idx] = r;
06776 d[top_idx] = r;
06777 d[bot_idx+1] = i;
06778 d[top_idx+1] = -i;
06779
06780 bot_idx = (y+offset)*nx+nx-2;
06781 top_idx = (ny-1-y)*nx+nx-2;
06782 r1 = d[bot_idx];
06783 i1 = d[bot_idx+1];
06784 r2 = d[top_idx];
06785 i2 = d[top_idx+1];
06786 r = (r1 + r2)/2.0f;
06787 i = (i1 + i2)/2.0f;
06788 d[bot_idx] = r;
06789 d[top_idx] = r;
06790 d[bot_idx+1] = i;
06791 d[top_idx+1] = -i;
06792 }
06793
06794 d[1] = 0; // 0 phase for this componenet
06795 d[nx-1] = 0; // 0 phase for this component
06796 d[ny/2*nx+nx-1] = 0;// 0 phase for this component
06797 d[ny/2*nx+1] = 0;// 0 phase for this component
06798 }
06799
06800 if (image->get_ndim() != 1) image->process_inplace("xform.fourierorigin.tocorner");
06801 image->do_ift_inplace();
06802 image->depad();
06803 }
|
|
|
Definition at line 196 of file processor.cpp. |
1.3.9.1