Main Page | Modules | Namespace List | Class Hierarchy | Alphabetical List | Class List | Directories | File List | Namespace Members | Class Members | File Members

EMAN::FRM2DAligner Class Reference

#include <aligner.h>

Inheritance diagram for EMAN::FRM2DAligner:

Inheritance graph
[legend]
Collaboration diagram for EMAN::FRM2DAligner:

Collaboration graph
[legend]
List of all members.

Public Member Functions

virtual EMDataalign (EMData *this_img, EMData *to_img, const string &cmp_name, const Dict &cmp_params=Dict()) const
 To align 'this_img' with another image passed in through its parameters.
virtual EMDataalign (EMData *this_img, EMData *to_img) const
string get_name () const
 Get the Aligner's name.
string get_desc () const
virtual TypeDict get_param_types () const

Static Public Member Functions

AlignerNEW ()

Static Public Attributes

const string NAME = "frm2d"

Member Function Documentation

virtual EMData* EMAN::FRM2DAligner::align EMData this_img,
EMData to_img
const [inline, virtual]
 

Implements EMAN::Aligner.

Definition at line 1722 of file aligner.h.

References align().

01723                                         {
01724                                                 return align(this_img, to_img, "frc", Dict());
01725                                         }

EMData * FRM2DAligner::align EMData this_img,
EMData to_img,
const string &  cmp_name,
const Dict cmp_params = Dict()
const [virtual]
 

To align 'this_img' with another image passed in through its parameters.

The alignment uses a user-given comparison method to compare the two images. If none is given, a default one is used.

Parameters:
this_img The image to be compared.
to_img 'this_img" is aligned with 'to_img'.
cmp_name The comparison method to compare the two images.
cmp_params The parameter dictionary for comparison method.
Returns:
The aligned image.

Implements EMAN::Aligner.

Definition at line 3047 of file aligner.cpp.

References EMAN::EMData::calc_center_of_mass(), EMAN::EMData::copy(), EMAN::EMData::do_fft(), frm_2d_Align(), EMAN::EMData::get_data(), EMAN::EMData::get_xsize(), EMAN::EMData::get_ysize(), ImageDimensionException, nx, ny, EMAN::EMData::oneDfftPolar(), EMAN::EMData::set_complex(), EMAN::EMData::set_ri(), EMAN::EMData::set_size(), sqrt(), EMAN::EMData::translate(), and EMAN::EMData::unwrap_largerR().

03049 {
03050         if (!this_img) {
03051                 return 0;
03052         }
03053         if (to && !EMUtil::is_same_size(this_img, to))
03054                 throw ImageDimensionException("Images must be the same size to perform translational alignment");
03055 
03056         int nx=this_img->get_xsize();
03057         int ny=this_img->get_ysize();
03058         int size =(int)floor(M_PI*ny/4.0);
03059         size =Util::calc_best_fft_size(size);//ming   bestfftsize(size);
03060         int MAXR=ny/2;
03061         //int MAXR=size;
03062         EMData *this_temp=this_img->copy(); // ming change avg to to
03063         FloatPoint com_test,com_test1;
03064         com_test=this_temp->calc_center_of_mass();//ming add
03065         float com_this_x=com_test[0];
03066         float com_this_y=com_test[1];
03067         delete this_temp;
03068 
03069 
03070         EMData *that_temp=to->copy();
03071         com_test1=that_temp->calc_center_of_mass();
03072         float com_with_x=com_test1[0];
03073         float com_with_y=com_test1[1];
03074         delete that_temp;
03075 
03076         EMData *avg_frm=to->copy();
03077         float dx,dy;
03078         //float dx=-(com_with_x-nx/2); //ming
03079         //float dy=-(com_with_y-ny/2); //ming
03080         //avg_frm->translate(dx,dy,0.0);
03081         EMData *withpcs=avg_frm->unwrap_largerR(0,MAXR,size,float(MAXR)); // ming, something wrong inside this subroutine
03082         //EMData *withpcs=avg_frm->unwrap(-1,-1,-1,0,0,1);
03083         EMData *withpcsfft=withpcs->oneDfftPolar(size, float(MAXR), float(MAXR));
03084 
03085         float *sampl_fft=withpcsfft->get_data(); //
03086         delete avg_frm;
03087         delete withpcs;
03088 
03089         int bw=size/2;
03090         unsigned long ind1=0, ind2=0, ind3=0, ind4=0, ind41=0;
03091         float pi2=2.0*M_PI, r2;
03092 
03093         EMData *data_in=new EMData;
03094         data_in->set_complex(true);
03095         data_in->set_ri(1);
03096         data_in->set_size(2*size,1,1);
03097         float * comp_in=data_in->get_data();
03098 
03099         int p_max=3;
03100         float *frm2dhhat=0;
03101 
03102         if( (frm2dhhat=(float *)malloc((p_max+1)*(size+2)*bw*size*2* sizeof(float)))==NULL){
03103                 cout <<"Error in allocating memory 13. \n";
03104                 exit(1);
03105         }
03106         //printf("p_max=%d\n",p_max);
03107         float *sb=0, *cb=0;             // sin(beta) and cos(beta) for get h_hat, 300>size
03108         if((sb=new float[size])==NULL||(cb=new float[size])==NULL) {
03109                 cout <<"can't allocate more memory, terminating. \n";
03110                 exit(1);
03111         }
03112         for(int i=0;i<size;++i) {        // beta sampling, to calculate beta' and r'
03113                 float beta=i*M_PI/bw;
03114                 sb[i]=sin(beta);
03115                 cb[i]=cos(beta);
03116         }
03117 
03118         for(int p=0; p<=p_max; ++p){
03119                 ind1=p*size*bw;
03120         float pp2=(float)(p*p);
03121                 for(int n=0;n<bw;++n){         /* loop for n */
03122                 ind2=ind1+n;
03123                 for(int r=0;r<=MAXR;++r) {
03124                                 ind3=(ind2+r*bw)*size;
03125                         float rr2=(float)(r*r);
03126                                 float rp2=(float)(r*p);
03127                         for(int i=0;i<size;++i){                            // beta sampling, to get beta' and r'
03128                                 r2=std::sqrt((float)(rr2+pp2-2.0*rp2*cb[i]));   // r2->r'
03129                                 int r1=(int)floor(r2+0.5f);                        // for computing gn(r')
03130                                 if(r1>MAXR){
03131                                         comp_in[2*i]=0.0f;
03132                                         comp_in[2*i+1]=0.0f;
03133                                 }
03134                                 else{
03135                                         float gn_r=sampl_fft[2*n+r1*(size+2)];           // real part of gn(r')
03136                                         float gn_i=sampl_fft[2*n+1+r1*(size+2)];           // imaginary part of gn(r')
03137                                                 float sb2, cb2, cn, sn;
03138                                                 if(n!=0){
03139                                                         if(r2 != 0.0){
03140                                                                 sb2=r*sb[i]/r2;
03141                                                                 cb2=(r*cb[i]-p)/r2;
03142                                                         }
03143                                                 else{
03144                                                                 sb2=0.0;
03145                                                                 cb2=1.0;
03146                                                         }
03147                                                 if(sb2>1.0) sb2= 1.0f;
03148                                                 if(sb2<-1.0)sb2=-1.0f;
03149                                                 if(cb2>1.0) cb2= 1.0f;
03150                                                 if(cb2<-1.0)cb2=-1.0f;
03151                                                 float beta2=atan2(sb2,cb2);
03152                                                 if(beta2<0.0) beta2+=pi2;
03153                                                 float nb2=n*beta2;
03154                                                 cn=cos(nb2);
03155                                                         sn=sin(nb2);
03156                                                 }
03157                                         else{
03158                                                         cn=1.0f; sn=0.0f;
03159                                                 }
03160                                                 comp_in[2*i]=cn*gn_r-sn*gn_i;
03161                                                 comp_in[2*i+1]=-(cn*gn_i+sn*gn_r);
03162                                 }
03163                         }
03164                         EMData *data_out;
03165                         data_out=data_in->do_fft();
03166                         float * comp_out=data_out->get_data();
03167                         for(int m=0;m<size;m++){                                     // store hat{h(n,r,p)}(m)
03168                                         ind4=(ind3+m)*2;
03169                                         ind41=ind4+1;
03170                                         frm2dhhat[ind4]=comp_out[2*m];
03171                                         frm2dhhat[ind41]=comp_out[2*m+1];
03172                                 }
03173                         delete data_out;
03174                         }
03175                 }
03176         }
03177 
03178         delete[] sb;
03179         delete[] cb;
03180         delete data_in;
03181         delete withpcsfft;
03182 
03183         float dot_frm0=0.0f, dot_frm1=0.0f;
03184         EMData *da_nFlip=0, *da_yFlip=0, *dr_frm=0;
03185         //dr_frm=this_img->copy();
03186         for (int iFlip=0;iFlip<=1;++iFlip){
03187                 if (iFlip==0){dr_frm=this_img->copy();  da_nFlip=this_img->copy();}
03188                 else {dr_frm=this_img->copy(); da_yFlip=this_img->copy();}
03189                 if(iFlip==1) {com_this_x=nx-com_this_x; } //ming   // image mirror about Y axis, so y keeps the same
03190 
03191                 dx=-(com_this_x-nx/2); //ming
03192                 dy=-(com_this_y-ny/2); //ming
03193                 dr_frm->translate(dx,dy,0.0); // this
03194                 EMData *selfpcs = dr_frm->unwrap_largerR(0,MAXR,size, (float)MAXR);
03195                 //EMData *selfpcs=dr_frm->unwrap(-1,-1,-1,0,0,1);
03196                 EMData *selfpcsfft = selfpcs->oneDfftPolar(size, (float)MAXR, (float)MAXR);
03197                 delete selfpcs;
03198                 delete dr_frm;
03199                 if(iFlip==0)
03200                         dot_frm0=frm_2d_Align(da_nFlip,to, frm2dhhat, selfpcsfft, p_max, size, com_this_x, com_this_y, com_with_x, com_with_y,cmp_name,cmp_params);
03201                 else
03202                         dot_frm1=frm_2d_Align(da_yFlip,to, frm2dhhat, selfpcsfft, p_max, size, com_this_x, com_this_y, com_with_x, com_with_y,cmp_name,cmp_params);
03203                 delete selfpcsfft;
03204         }
03205 
03206         delete[] frm2dhhat;
03207         if(dot_frm0 <=dot_frm1) {
03208 #ifdef DEBUG
03209                 printf("best_corre=%f, no flip\n",dot_frm0);
03210 #endif
03211                 delete da_yFlip;
03212                 return da_nFlip;
03213         }
03214         else {
03215 #ifdef DEBUG
03216                 printf("best_corre=%f, flipped\n",dot_frm1);
03217 #endif
03218                 delete da_nFlip;
03219                 return da_yFlip;
03220         }
03221 }

string EMAN::FRM2DAligner::get_desc  )  const [inline, virtual]
 

Implements EMAN::Aligner.

Definition at line 1732 of file aligner.h.

01733                                         {
01734                                                 return "FRM2D uses two rotational parameters and one translational parameter";
01735                                         }

string EMAN::FRM2DAligner::get_name  )  const [inline, virtual]
 

Get the Aligner's name.

Each Aligner is identified by a unique name.

Returns:
The Aligner's name.

Implements EMAN::Aligner.

Definition at line 1727 of file aligner.h.

01728                                         {
01729                                                 return NAME;
01730                                         }

virtual TypeDict EMAN::FRM2DAligner::get_param_types  )  const [inline, virtual]
 

Implements EMAN::Aligner.

Definition at line 1741 of file aligner.h.

References EMAN::TypeDict::put().

01742                                         {
01743                                                         TypeDict d;
01744                                                         d.put("maxshift", EMObject::INT,"Maximum translation in pixels in any direction. If the solution yields a shift beyond this value in any direction, then the refinement is judged a failure and the original alignment is used as the solution.");
01745 
01746                                                         //d.put("p_max", EMObject::FLOAT,"p_max is");
01747                                                         return d;
01748                                         }

Aligner* EMAN::FRM2DAligner::NEW  )  [inline, static]
 

Definition at line 1737 of file aligner.h.

01738                                         {
01739                                                 return new FRM2DAligner();
01740                                         }


Member Data Documentation

const string FRM2DAligner::NAME = "frm2d" [static]
 

Definition at line 87 of file aligner.cpp.


The documentation for this class was generated from the following files:
Generated on Mon Aug 13 13:41:32 2012 for EMAN2 by  doxygen 1.3.9.1